积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(147)C++(67)Python(36)Julia(18)云计算&大数据(18)综合其他(16)人工智能(15)Conda(14)Rust(12)VirtualBox(11)

语言

全部英语(128)中文(简体)(32)中文(繁体)(24)zh(5)日语(2)[zh](1)西班牙语(1)fj(1)韩语(1)

格式

全部PDF文档 PDF(195)PPT文档 PPT(4)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 199 个.
  • 全部
  • 后端开发
  • C++
  • Python
  • Julia
  • 云计算&大数据
  • 综合其他
  • 人工智能
  • Conda
  • Rust
  • VirtualBox
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • zh
  • 日语
  • [zh]
  • 西班牙语
  • fj
  • 韩语
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Deploy VTA on Intel FPGA

    INDUSTRIES, INCORPORATED ACCELERATED VISUAL PERCEPTION LIANGFU CHEN 11/16/2019 DEPLOY VTA ON INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 2 Moore’s Law is Slowing Down MOTIVATION©2019 Terasic DE10-Nano DEPLOY VTA ON INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 5 Software - CMA Contiguous Memory Allocation – Linux Kernel DEPLOY VTA ON INTEL FPGA https://pynq.readthedocs INCORPORATED 6 Software - CMA Contiguous Memory Allocation – Linux Kernel Module DEPLOY VTA ON INTEL FPGA Setup Environment Variables Navigate to 3rdparty/cma and build kernel module Copy kernel module
    0 码力 | 12 页 | 1.35 MB | 5 月前
    3
  • pdf文档 Bridging the Gap: Writing Portable Programs for CPU and GPU

    1/66Bridging the Gap: Writing Portable Programs for CPU and GPU using CUDA Thomas Mejstrik Sebastian Woblistin 2/66Content 1 Motivation Audience etc.. Cuda crash course Quiz time 2 Patterns Oldschool Motivation Patterns The dark path Cuda proposal Thank you Why write programs for CPU and GPU Difference CPU/GPU Algorithms are designed differently Latency/Throughput Memory bandwidth Number of cores Motivation Patterns The dark path Cuda proposal Thank you Why write programs for CPU and GPU Difference CPU/GPU Why it makes sense? Library/Framework developers Embarrassingly parallel algorithms User
    0 码力 | 124 页 | 4.10 MB | 6 月前
    3
  • pdf文档 Heterogeneous Modern C++ with SYCL 2020

    http://wongmichael.com/about ● C++11 book in Chinese: https://www.amazon.cn/dp/B00ETOV2OQ We build GPU compilers for some of the most powerful supercomputers in the world 34 Nevin “:-)” Liber nliber@anl Attribution 4.0 International License SYCL Single Source C++ Parallel Programming GPU FPGA DSP Custom Hardware GPU CPU CPU CPU Standard C++ Application Code C++ Libraries ML Frameworks give better performance on complex apps and libs than hand-coding AI/Tensor HW GPU FPGA DSP Custom Hardware GPU CPU CPU CPU AI/Tensor HW Other BackendsSYCL 2020 is here! Open Standard for
    0 码力 | 114 页 | 7.94 MB | 6 月前
    3
  • pdf文档 Distributed Ranges: A Model for Building Distributed Data Structures, Algorithms, and Views

    performance claims, visit www.intel.com/PerformanceIndex or scan the QR code: © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries about future Intel products. - I work in Intel’s research labs. Work described here will involve experimental prototypes and early research.Problem: writing parallel programs is hard - Multi-GPU, multi-CPU / execution necessary. CPU NIC GPU GPU GPU GPU Xe LinkMulti-GPU Systems - NUMA regions: - 4+ GPUs - 2+ CPUs CPU NIC GPU GPU GPU GPU Xe LinkMulti-GPU Systems - NUMA regions: - 4+ GPUs
    0 码力 | 127 页 | 2.06 MB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    Target-independent Relay passes Target-optimized graph Target-dependent Relay passes Intel x86 ARM CPU Nvidia GPU ARM GPU Schedule templates written in TVM Tensor IR .. More targets AutoTVM – Tuning Target-independent Relay passes Target-optimized Int8 Relay Graph Intel x86 schedule ARM CPU schedule Nvidia GPU schedule ARM GPU schedule Relay Int8 Graph Target-dependent Relay layout opt© 2019 its Affiliates. All rights reserved. Outline • QNN Dialect • Design • Operators • Results on Intel Cascade Lake© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Quantized Operators
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 TVM@AliOS

    人 人 e 人 e@ TVM Q@ AliOs Overview TVM @ AliOs ARM CPU TVM @ AliOos Hexagon DSP TVM @ Alios Intel GPU Misc /NiiOS ! 驱动万物智能 PART ONE TVM Q@ AliOs Overview AiOS 1驱动万物智能 AliOs overview 。 AliOs (www AN 2X MobilenetV2 TFLite 1.34X MobilenetV2 QNNPACK AliOs @ Roewe RX5 MAX OpenVINO @ Intel GPU AliDS AR-Nav Product @ SUV Release and adopt TVM (Apollo Lake Gold) Model 1.6X Intel AliOs TVM Arch Model 。 Facelandmark Pedestrian & Vehicle Detection Voice-GUI Gesture Lanenet NLU DMS FacelD Multimodal Interection CPU (ARM、Intel) 1驱动万物智能 Accelerated
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 Back to Basics: Concurrency

    transistors incorporated in a chip will approximately double every 24 months." --Gordon Moore, Intel co-founderMoore’s Law (2/2) 29 ● Around 1965 Gordon Moore predicted the number of transistors months." --Gordon Moore, Intel co-founderDennard Scaling (1/3) "The number of transistors incorporated in a chip will approximately double every 24 months." --Gordon Moore, Intel co-founder http://www-cs-faculty transistors incorporated in a chip will approximately double every 24 months." --Gordon Moore, Intel co-founder http://www-cs-faculty.stanford.edu/~eroberts/cs181/projects/2010-11/TechnologicalSing
    0 码力 | 141 页 | 6.02 MB | 6 月前
    3
  • pdf文档 2024 中国开源开发者报告

    MiniMax 等。  其次是由 TogetherAI、Groq、Fireworks、Replicate、硅基流动等组成的 GPU 推理集群 服务提供商,它们处理扩展与缩减等技术难题,并在基本计算费用基础上收取额外费用,从 而让应用公司无需承担构建和管理 GPU 推理集群的高昂成本,而是可以直接利用抽象化的 AI 基础设施服务。  第三类是传统的云计算平台,例如亚马逊的 Amazon Vertex AI 等,允许应用开发者轻松部署和使用标准化或定制化的 AI 模型, 并通过 API 接口调用这些模型。  最后一类是本地推理,SGLang、vLLM、TensorRT-LLM 在生产级 GPU 服务负载中表现 出色,受到许多有本地托管模型需求的应用开发者的欢迎,此外,Ollama 和 LM Studio 也 是在个人计算机上运行模型的优选方案。 62 / 111 除模型层面外,应 软件,例如:微控制处理器(MCU)会运行实时操作系统或者直接运行某个特定程序;中央处 理器(CPU)往往会运行 Windows、Linux 等复杂操作系统作为底座支撑整个软件栈;图形 处理器(GPU)一般不加载操作系统而是直接运行图形图像处理程序,神经网络处理器 (NPU)则直接运行深度学习相关程序。 处理器芯片设计是一项很复杂的任务,整个过程犹如一座冰山。冰山水面上是用户或者大 众看到
    0 码力 | 111 页 | 11.44 MB | 8 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    © 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon/Intel Confidentia Presenter: Zhi Chen, Cody Yu Amazon SageMaker Neo, Deep Engine Science Bring Your Own Codegen to TVM Chip© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Example showcase: Intel MKL-DNN (DNNL) library 1. Import packages import numpy as np from tvm import relay 2. Load a pretrained Relay Runtime (VM, Graph Runtime, Interpreter) Your Dispatcher Target Device General Devices (CPU/GPU/FPGA) Mark supported operators or subgraphs 1. Implement an operator-level annotator, OR 2. Implement
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Tracy: A Profiler You Don't Want to Miss

    iOS, Android, WASM*) Hybrid profiling capabilities (sampling and/or instrumentation) (CPU and GPU instrumentation) Tracing capabilities (values, messages, plots, allocations, …) Hassle-free integration spall https://handmade.network/p/333/spall/ geiger https://github.com/david-grs/geiger Intel IACA https://www.intel.com/content/www/us/en/developer/ articles/tool/architecture-code-analyzer.html“There is experience! Tracy can do it all!Tracy Profiler GUI 13Tracy Profiler GUI 14 Frame Info Menu bar GPU Timeline (per “device”) CPU Timeline (per-thread) Custom Plots & Allocation Trackers15Tracy Client
    0 码力 | 84 页 | 8.70 MB | 6 月前
    3
共 199 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 20
前往
页
相关搜索词
DeployVTAonIntelFPGABridgingtheGapWritingPortableProgramsforCPUandGPUHeterogeneousModernC++withSYCL2020DistributedRangesModelBuildingDataStructuresAlgorithmsViewsTVMMeetupQuantizationAliOSBacktoBasicsConcurrency2024中国开源开发开发者报告BringYourOwnCodegenTracyProfilerYouDonWantMiss
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩