CurveFS ChunkID持久化chunkid 持久化© XXX Page 2 of 3 1. 2. 3. 1. 2. 3. 4. 5. 6. 1. 2. 3. 4. 1. 1. 1. 2. 1. 2. 3. 4. 3. 2. 背景 将原有的获取chunkid的方法从space迁入mds中,并持久化写入etcd中; 只考虑单 ChunkIDGenerator 类对象,方法 AllocateS3Chunk 调用 ChunkIDGenerator对象的GenChunkID方法; ChunkIDGenerator 类 构造函数 初始化 init 函数:用于初始化或者更改 ChunkIdAllocatorImpl 的一些配置。但是这些配置不会立即生效,而是等到当前 chunkId池枯竭时才会生效。 析构函数 GenChunkID 申请的chunkID池是否枯竭?0 码力 | 3 页 | 79.38 KB | 6 月前3
Curve文件系统元数据持久化方案设计© XXX Page 1 of 12 元数据持久化© XXX Page 2 of 12 前言 Raft Log Raft Snapshot 持久化文件 key_value_pairs 其他说明 实现 1、inode、entry 的编码 2、KVStore Q&A 单靠 redis 的 AOF 机制能否保证数据不丢失? redis 的高可用、高可扩方案? redis + muliraft redis 中哈希表实现的优点? 参考 前言 根据之前讨论的结果,元数据节点的架构如下图所示,这里涉及到两部分需要持久化/编码的内容: Raft Log:记录 operator log Raft Snapshot:将内存中的数据结构以特定格式 dump 到文件进行持久化© XXX Page 3 of 12 Raft Log +------+------------+-----+----- -----+----------------+---------+ 持久化文件 字段 字节数 说明 CURVEFS 7 magic number(常量字符 "CURVEFS"),用于标识该文件为 curvefs 元数据持久化文件 version 4 文件版本号(当文件格式变化时,可以 100% 向后兼容加载旧版持久化文件) size 8 键值对数量 key_value_pairs / 键值对(当0 码力 | 12 页 | 384.47 KB | 6 月前3
Raft在Curve存储中的工程实践成本/性能挑战 Curve块存储和文件存储均采用raft协议整体架构 • 对接OpenStack平台为云主机提供高性能块 存储服务 • 对接Kubernetes为其提供RWO、RWX等类 型的持久化存储卷 • 对接PolarFS作为云原生数据库的高性能存储 底座,完美支持云原生数据库的存算分离架 构 • Curve作为云存储中间件使用S3兼容的对象 存储作为数据存储引擎,为公有云用户提供 他服务器,当保证安全性的时候告诉其他服务器应用 日志条目到他们的状态机中。 • Candidate: 发起选举。获取大多数选票的候选人将 成为领导者。 • Follower: 响应来自其他服务器的请求,如果接受不 到消息,就变成候选人并发起一次选举。 • 时间被划分成一个个的任期,每个任期开始都是一次 选举。 • 选举成功,领导⼈会管理整个集群直到任期结束。 • 选举失败,这个任期就会没有领导⼈⽽结束。 raft选举leader 致已经被提交,系统切换到新的配置(new)。RAFT协议简介 日志压缩 • 日志会不断增长,占用空间 • 采用快照的方式压缩日志 • 在某个时间点,整个系统的状态都以快照的形式写入 到稳定的持久化存储中 • 完成一次快照之后,删除时间点之前的所有日志和快 照。BRAFT简介 • raft协议提出之后,涌现出了非常多的实现,比如etcd,braft,tikv等。 • braft是raft的0 码力 | 29 页 | 2.20 MB | 6 月前3
CurveFS Client 概要设计判断inode结构中,对应请求[off, size]位置的空间是否有分配:如果未分配或只有部分分配空间,则调用空间分配器分配空间,并根据空间分配器返回结果,修改inode结构(包括file length); inode修改需要持久化到底层并修改本地cache; 调用curve client接口,写curve卷对应[offset,len] 数据。 (这里涉及到一个问题,是否从fuse下来的请求是4k对齐的,如果不是,那么这里还需要修改为read offset,len] 调用curve client写); 修改inode结构,如果上述区域存在先前未写过的区域,则需要去掉unwritten,具体方式根据inode结构而定;inode修改需要持久化到底层并修改本地cache;© XXX Page 6 of 11 read void (*read) (fuse_req_t req, fuse_ino_t ino, size_t size, off_t fuse_file_info *fi); 根据inode id 找到inode id 对应的inode 结构(从缓存或者metaserver) 根据to_set字段设置相应的attr字段,然后持久化到metaserver,并更新本地缓存。 access 可先不支持,返回ENOSYS rename void (*rename) (fuse_req_t req, fuse_ino_t parent0 码力 | 11 页 | 487.92 KB | 6 月前3
curvefs client删除文件和目录功能设计件节点才会从 被清除。 reserve 使用了session机制,记录client端的open状态 通过META文件系统访问reserve 使用CUTOMA_FUSE_RESERVED_INODES消息保持和释放inode 实现了Timer,定期判断是否还有session,如果没有client打开,则进行清理。 优点: 通过meta文件系统来管理trash,更为优雅。© XXX Page 为工具实现查询trash接口; Metaserver端功能二 session机制: 需要实现在metaserver open file的接口,在接口中保存session。(需不需要持久化?单节点metaserver可以不持久化,但是高可用之后,怎么通知另外两个metaserver,需要再考虑) 需要实现在metaserver close file的接口,移除session。 实现metaserver端s0 码力 | 15 页 | 325.42 KB | 6 月前3
BRPC与UCX集成指南●构建于uct之上,实现更加高级的功能,容易使用,但有一定开销。 ●UCT和UCP两者都有context概念,但是UCT只对一块网卡,而UCP把若干个UCT组合起 来,自动选择最快路径传输。 ●高级特性 –大消息报文的自动分片传输 –Active message, atomic operation, tag match, stream27 典型的RDMA栈28 UCX 编程的一些基本概念 ●Context –完成ucx的功能,可以在应用程序中调用的函数(不是单独执行的线程) ●Listener –接收连接请求 ●Ep –连接对象,在ep上请求发送和接收29 UCP 消息接口类型 ●Active message –速度最快,被brpc使用作为消息传递 –消息通过回调函数接收 –消息异步发送 ●Tag –MPI使用 ●Stream –官方不推荐30 WORKER ●worker是UCX通讯中的核心概念,它是一个进度引擎(progress ●提供Release Connection。 –在UcpCm决定关闭连接时53 UcpWorker的实现 ●使用了ucp active message –当消息很短时,ucx使用内部缓冲提供给brpc(比较快) –当消息很大时,由brpc提供接收缓冲区(rndv,rendezvous) ●阀值可调 –接收和发送使用无锁队列 ●UcpWorker接收时写入UcpConnection的无锁队列0 码力 | 66 页 | 16.29 MB | 6 月前3
Curve元数据节点高可用revision:3], 因此watch Leader/MDS2。 step3: MDS1退出后,MDS2收到MDS1的key被删除的消息,Campagin成功© XXX Page 13 of 30 异常情况1:备MDS2中途退出 step1:MDS3收到MDS2的key被删除的消息 step2: MDS3重新获取到有相同前缀Leader的key为{ [Leader/MDS1, revision:2]} etcd集群leader失效,到重新选举出leader的耗时 ElectionTime > ElectionTimeout 4.2.2 异常情况1:MDS1退出,可以正常处理 MDS2收到leader/MDS1被删除的消息,Campaign成功,成为leader© XXX Page 20 of 30 2. mds2当选leader之后,同样与etcd server有三类交互: ①与etcd server维持租约。 PeriodicGetTime ① 红色的点是etcd集群选主成功的时间点,选主成功之后MDS1的lease过期,Leader/MDS1被删除 ② 绿色的点是MDS2收到Leader/MDS1删除消息的时间点。此时MDS2启动并提供服务 ③ 黄色的点是最坏情况,MDS1在绿色点和红色点之间成功get到leader/MDS1, 在下一个周期get失败 这种情况下出现双主的最长时间为PeriodicGetTime(蓝色直线段),0 码力 | 30 页 | 2.42 MB | 6 月前3
Curve文件系统元数据管理文件系统的元数据是否全缓存? 元数据持久化在单独的元数据服务器上?在磁盘上?在volume上? inode+dentry方式?当前curve块存储的kv方式? 是否有单独的元数据管理服务器? 2、其他文件系统的调研总结 fs 中心化元数据 内存namespace元数据 内存空间分配元数据 元数据持久化 元数据扩展 小文件优化 空间管理单位 数据持久化 其他© XXX Page 3 of 24 dentry → skip list (key是name,每个目录下一个) 计算出来的 binlog,随时间会越来越大 差 DG Master/Slave glusterfs 无中心化服务器 dht算法 hash 扩展时大量迁移 client缓存 inode→ hashtable(gfid) dentry→ hashtable(name) inode扩展属性字段 和写数据一样 分别从不同场景上进行分析,curve文件系统的元数据应该有以下的操作: 1、系统加载的时候,元数据从持久化介质加载。 2、业务运行过程中,元数据的增删改查。 3、系统退出的时候,元数据持久化。© XXX Page 7 of 24 场景一:系统加载的时候,元数据从持久化介质中加载。 元数据进行恢复的时候,有两种情况。 一种系统必须等到元数据全部加载到内存才能提供服务,这种情况0 码力 | 24 页 | 204.67 KB | 6 月前3
Curve质量监控与运维 - 网易数帆运维——保障Curve始终稳定高效运行。 质量 ✓ 质量管理体系(设计、开发、review、CI) ✓ 测试方法论(单元测试、集成测试、系统测试) 监控 ✓ 监控架构 ✓ 指标采集、后端处理、可视化展示 运维 ✓ 运维特性 (易部署、易升级、自治) ✓ 运维工具(部署工具、管理工具) 4/33背景 01 02 03 04 Curve质量控制 Curve监控体系 Curve运维体系软件质量 异常自动化 测试 混沌测试 (每周一次) CI测试(编译、静态检 查、单元测试、集成测 试、覆盖率80%卡点) 邮件通知 Curve所有代码均在github托管。新 代码需要通过CI测试和code review才 能合入master分支,确保新合入代码 的功能、正确性、规范性等都有基本 保障;而每日运行的dailybuild测试在 CI测试基础上增加了异常自动化测试 和混沌测试,确保master分支代码的 单元测试 1300+用例 行覆盖80%+,分支覆盖70%+ 集成测试 Given When Then 设计方法 500+用例 异常测试 40+自动化用例 混沌测试 20轮自动化随机故障注入 12/33单元测试 单元测试是软件开发的过程中最基本的测试,它用来对一个模块、一个函数或者一个类来进行 正确性检验的测试工作。 curve通过lcov统计代码覆盖率,衡量单元测试的完备程度,如下图所示:0 码力 | 33 页 | 2.64 MB | 6 月前3
CurveFS方案设计块设备服务,CurveFS会基于此实现。第一阶段的目标是实现 满足数据库场景的文件接口。 调研 开源fs 当前对已有的开源分布式文件系统进行了调研,主要包括系统架构,元数据内存结构,元数据持久化,调研文档如下: chubaofs: ChubaoFS© XXX Page 3 of 14 1. 2. 3. moosefs: https://kms.netease.com/ 要怎样的元数据节点的性能? 可行性分析 方案对比 根据上述调研和测试结果,我们考虑了三种curvefs的元数据设计方案: CurveFS kv方案设计 curve实现块设备时,元数据不是扁平化的设计,而是采用来有目录层级的 namespace 方式,namespace 已经实现了 fs 元数据管理的雏形,具备了基本的元数据管理功能。(当时为什么要设计为 namespace 的管理形式?留有租户这个概念),直接基于 依赖于第三方kv存储,目前是etcd CurveFS 单机内存元数据设计 类似 fastcfs 和 moosefs 的元数据设计方式,采用通用的 dentry,inode 两层映射关系,所有的元数据都缓存在内存中,持久化在 binlog 文件中,binlog采用定期dump的方式删除。基于这种方式的开发: a. 性能 加载:数据量较大的情况下,元数据节点启动较慢;但是元数据使用 master-slave 可以降低0 码力 | 14 页 | 619.32 KB | 6 月前3
共 22 条
- 1
- 2
- 3













