积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(48)Go(48)

语言

全部中文(简体)(46)英语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(45)其他文档 其他(2)PPT文档 PPT(1)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 48 个.
  • 全部
  • 后端开发
  • Go
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 2.2.6 字节跳动在 Go 网络库上的实践

    字节跳动在 Go 网络库上的实践 何晨 字节跳动 基础架构 – 研发 应用层 Netpoll – 面向 RPC 场景的网络库 Go net Netpoll 网络层 RPC 框架 HTTP 框架 KiteX Hertz Netpoll – 性能表现 Environment CPU: 4 cores Memory: 8GB Go: 1.15.4 Netpoll
    0 码力 | 42 页 | 3.19 MB | 1 年前
    3
  • pdf文档 2.游戏战中陪伴助手微服务架构设计与应用

    我们要怎么做? • 我们的输出是什么? • 策略:语音 / 标记 • 娱乐:三杀收下! • 攻略:AKM 不适合新手 • 指导:我们去资源点搜刮吧 • 有理有据: • 去哪里 • 做什么 • 为什么 黑盒系统,输入输出 初始方案——Lua 脚本 符合直觉的第一个方案 初始方案——Lua 脚本 如何新增策略 初始方案——Lua 脚本 如何修改策略 初始方案——Lua 方案 显而易见的问题 问题 需求 - 所有策略需求都需要走开发流程 - 迭代周期长:2周开发、测试、上线 运营 - 变更困难,修改策略 = 修改代码 开发 - 代码低内聚,交接难度大 扩展 - 没有考虑扩展 功能 - 难以实现战略推荐 - 早期:先考虑有无 - 引入推荐系统 系统思考——如何评判方案的好坏? 需要定义几个维度来评判一个方案的好坏 - 响应性能: 获取事件到输出策略的延迟 - 服务器成本: 服务器成本: 每服务千人成本越低越好 - 运营简易度: 设计新运营策略的难度 - 开发迭代: 如需开发介入,那么功能迭代的速度 - 可解释性: 理由是否能否说服玩家遵从建议 - 对用户价值: 提升玩家体验 / 吃鸡率的帮助有多大 推荐系统接入——系统架构 推荐系统: 向量化 方案探索——资源点推荐 针对具体场景开发 - 专利:《一种在游戏中离线挖掘、实时推荐资源点的方案》 - 大数据挖掘资源出现位置
    0 码力 | 47 页 | 11.10 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Go版

    逐渐变得更加精细和复杂。从巧夺天工的匠人技艺、 到解放生产力的工业产品、再到宇宙运行的科学规律,几乎每一件平凡或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小 到一个家庭,社会的主要组织形式呈现出“树”的特征;冬天的衣服就像“栈”,最先穿上的最后才能脱下; 羽毛球筒则如同“队列”,一端放入、 10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 12.3 构建二叉树问题 . . .
    0 码力 | 383 页 | 18.48 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Go 版

    逐渐变得更加精细和复杂。从巧夺天工的匠人技艺、 到解放生产力的工业产品、再到宇宙运行的科学规律,几乎每一件平凡或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小 到一个家庭,社会的主要组织形式呈现出“树”的特征;冬天的衣服就像“栈”,最先穿上的最后才能脱下; 羽毛球筒则如同“队列”,一端放入、 10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 12.3 构建二叉树问题 . . .
    0 码力 | 384 页 | 18.49 MB | 9 月前
    3
  • pdf文档 Hello 算法 1.0.0 Golang版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 12.3 构建二叉树问题 . . . ,通常在进行 3~5 轮的重复后,就能将其牢记在心。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 hello‑algo
    0 码力 | 382 页 | 17.60 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Golang版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 12.3 构建二叉树问题 . . . 照“艾宾浩斯遗忘曲线”来复习题目,通常在进行 3‑5 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 如图 0‑7 所示,本书内容主要涵盖“第一阶段”,旨在帮助你更高效地展开第二和第三阶段的学习。 第 0 章 前言 hello‑algo
    0 码力 | 379 页 | 30.70 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 Golang版

    2. 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 10.3. 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.4. 重识搜索算法 . . . 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 12.2. 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 12.3. 构建二叉树问题 . . . 照“艾宾浩斯遗忘曲线”来复习题目,通常在进行 3‑5 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 作为一本入门教程,本书内容主要涵盖“第一阶段”,旨在帮助你更高效地展开第二和第三阶段的学习。 Figure 0‑7.
    0 码力 | 347 页 | 27.40 MB | 1 年前
    3
  • pdf文档 基于open-falcon的平安云监控

    argus是什么 Ø 为什么选用Go Ø argus的前身 Ø argus的现状 Ø argus的未来 背景 Ø 应对云主机快速增长 Ø 打造用户自助服务的监控平台 Ø 适应内部的三级网络架构 背景 云管区 公共服务区 可用区 目录 Ø 团队介绍 Ø 背景 Ø 系统定位 Ø argus是什么 Ø 为什么选用Go Ø argus的前身 Ø argus的现状 Ø 系统定位 Ø 保证基础监控,提供监控通道 Ø 要求高可用、高可扩展 Ø 分离用户、平台管理员 角色 Ø 建设用户自助平台(看性能、配告警、收告警) Ø 保证告警覆盖率,按类型初始化通用告警策略 Ø 兼顾通用的和个性的监控要求 目录 Ø 团队介绍 Ø 背景 Ø 系统定位 Ø argus是什么 Ø 为什么选用Go Ø argus的前身 Ø argus的现状 Ø argus的未来 alarm gitlab 问题&目标 Ø 问题 Ø 没有异地容灾 Ø 跨区域上报数据,会产生大量专线流量 Ø 隔离性不好 Ø 目标 Ø 异地容灾、高可用 Ø 节省专线带宽 Ø 支持三级网络架构 Ø 支持按照租户进行隔离 Ø 运维入口统一 argus的架构 可用区 云管区(主备) 公共服务区 云管区(深圳、上海、廊坊) agent gateway proxy transfer
    0 码力 | 30 页 | 10.40 MB | 1 年前
    3
  • pdf文档 05. OpenKruise镜像预热实践_王思宇

    backoffLimit: 3 timeoutSeconds: 300 特点: • 不配置 selector,默认全集群范围 • 集群中新增节点自动触发预热 • 采用 Never 策略长期运行 采用 Never 策略下,ImagePullJob 每隔 24h 左右会触发在范围内的所有节点上重试 拉取一次。 01. 基础镜像 – 集群维度预热 常见预热使用场景 apiVersion: apps d: 300 pullPolicy: backoffLimit: 3 timeoutSeconds: 300 特点: • 不配置 selector,默认全集群范围 • 采用 Always 策略一次性预热(也可以配 置为 Never,视场景而定) 整个 job 预热超时时间 30min job 完成后,过 5min 自动清理 02. sidecar镜像 – 集群维度预热 常见预热使用场景 selector: matchLabels: resource-pool: faas 特点: • 配置 selector 为特殊业务对应资源池范围 • 资源池中新增节点自动触发预热 • 采用 Never 策略长期运行 03. 特殊业务镜像 – 资源池维度预热 版本前瞻:原地升级与预热的结合 第五部分 对效率的追求 create schedule attach/mount volume cni
    0 码力 | 28 页 | 5.78 MB | 1 年前
    3
  • pdf文档 大规模高性能区块链架构设计模式与测试框架-李世敬

    版权所有 ©2016-2021 ⼤�模⾼性能区��架构⾯�的�� 大规模高性能 区块链架构设计 网络连通问题 数据孤岛问题 异构部署问题 性能扩展问题 之困局 ? n 机构间数据难打通,不愿打通 n 公网内网、网关网闸情况复杂 n 业务组织形式不同,异构链/系统难适配 n 数据量、网络复杂度指数上升,架构难扩展 16 趣链科技 版权所有 ©2016-2021 主链 节点 节点 锚节点 18 趣链科技 版权所有 ©2016-2021 18 趣链科技 版权所有 ©2016-2021 18 趣链科技 版权所有 ©2016-2021 18 不同分区(Namespace)间共识、执行、存储、网络完全独立;借助分区,一方面可实现业务隔离,保障 数据隐私安全;另一方面可实现交易并行处理,提升系统整体性能。 功 能 特 性 分区机制 业务分区而治 • 通过Namespace进行业务划分 并发能⼒强 全连接 双向通信 ⽹络⾃发现 ⾃适应路由 跨域转发 • 简化配置 • 动态调整 • 跨域通信 全连接转发策略 ⾃发现转发策略 区块链平台关键技术-自发现网络 21 趣链科技 版权所有 ©2016-2021 区块链平台关键技术-网络流控 提供交易拦截、消息分发、带宽限流等多维度⽹络流量控制服务,在请求激增场景下保证系统的稳定运⾏, 提⾼系统可⽤性 功 能 特
    0 码力 | 39 页 | 56.58 MB | 1 年前
    3
共 48 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
2.2字节跳动Go网络库上实践游戏战中陪伴助手服务架构构设设计架构设计应用Hello算法1.11.2简体中文简体中文1.0Golang0b50b4基于openfalcon平安监控05OpenKruise镜像预热王思宇大规规模大规模高性性能高性能区块模式测试框架李世敬
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩