BRPC与UCX集成指南
接口服务,例如上面的EchoService6 BRPC SERVER7 BRPC SERVER8 BRPC client9 BRPC EndPoint EndPoint是一个代表通讯地址的数据结构, 是一个C++类。 字段: ip,port ●在Socket创建时需要提供EndPoint ●Socket::Connect时需要Remote EndPoint ●Accept的Socket可以获得Remote ●Accept的Socket可以获得Remote EndPoint10 BRPC Socket对象 ●brpc最终的网络通讯都集中在socket对象里面 ●读socket通过EventDispatcher触发 ●上层发送网络数据通过写socket完成,不能立刻完成的,则去启动后台bthread去完成。11 BRPC SocketMap ●根据EndPoint作为一个map的Key,Value是Socket对象 ●So Channel远程调用的发起21 UCX ●NVIDIA Mellanox 开源项目 ●支持RDMA,TCP,Shared memory等 ●能透明支持多个链路传输,例如多网卡bond ●编译成.so或lib的方式,可以集成到应用程序里 ●有完善的配置功能,ucx_info可以dump配置信息 ●有性能测试工具 ●比较详细的文档2223 UCS ●是一些工具代码,例如 –链表 –hash table –epoll0 码力 | 66 页 | 16.29 MB | 5 月前3Curve元数据节点高可用
© XXX Page 1 of 30 Curve元数据节点高可用© XXX Page 2 of 30 1. 需求 2. 技术选型 3. etcd clientv3的concurrency介绍 3.1 etcd clientV3的concurrency模块构成 3.2 Campaign的流程 3.2.1 代码流程说明 3.2.2 举例说明Campagin流程 3.3 Observe的流程 Etcd集群与MDS1(当前leader)出现网络分区 4.2.5.1 事件一先发生 4.2.5.2 事件二先发生 4.2.6 异常情况4:Etcd集群的follower节点异常 4.2.7 各情况汇总 1. 需求 mds是元数据节点,负责空间分配,集群状态监控,集群节点间的资源均衡等,mds故障可能会导致client端无法写入。 因此,mds需要做高可用。满足多个mds, 但同时只有一个mds节点提供服务,称该提供服务的 的就是zookeeper和etcd, 考虑当前系统中mds有两个外部依赖模块,一是mysql, 用于存储集群拓扑的相关信息;二是etcd,用于存储文件的元数据信息。而etcd可以用于实现mds高可用,没必要引入其他组件。 使用etcd实现元数据节点的leader主要依赖于它的两个核心机制: TTL和CAS。TTL(time to live)指的是给一个key设置一个有效期,到期后key会被自动删0 码力 | 30 页 | 2.42 MB | 5 月前3Curve文件系统元数据管理
of 24 Curve文件系统元数据管理(已实现)© XXX Page 2 of 24 1. 2. 3. 4. Inode 1、设计一个分布式文件系统需要考虑的点: 2、其他文件系统的调研总结 3、各内存结构体 4、curve文件系统的元数据内存组织 4.1 inode定义: 4.2 dentry的定义: 4.3 内存组织 5 元数据分片 5.1 分片方式一:in 1、设计一个分布式文件系统需要考虑的点: 文件系统的元数据是否全缓存? 元数据持久化在单独的元数据服务器上?在磁盘上?在volume上? inode+dentry方式?当前curve块存储的kv方式? 是否有单独的元数据管理服务器? 2、其他文件系统的调研总结 fs 中心化元数据 内存namespace元数据 内存空间分配元数据 元数据持久化 元数据扩展 小文件优化 空间管理单位 数据持久化 其他© XXX Page moosefs(mfs) 有元数据服务器 全内存 fsnode → hashtable(inode id) fsedge → hashtable (parent inode + name) 全内存 chunk → hashtable(chunk id) log + dump record 差 否 chunk 链式多副本 overwirte有数据不一致风险 chubaofs(cfs) 有元数据服务器 inode0 码力 | 24 页 | 204.67 KB | 5 月前3Curve支持S3 数据缓存方案
© XXX Page 1 of 9 Curve支持S3 数据缓存方案© XXX Page 2 of 9 版本 时间 修改者 修改内容 1.0 2021/8/18 胡遥 初稿 背景 整体设计 元数据采用2层索引 对象名设计 读写缓存分离 缓存层级 对外接口 后台刷数据线程 本地磁盘缓存 关键数据结构 详细设计 Write流程 Read流程 ReleaseCache流程 基于s3的daemon版本基于基本的性能测试发现性能非常差。具体数据如下: 通过日志初步分析有2点原因© XXX Page 3 of 9 1.append接口目前采用先从s3 get,在内存中合并完后再put的方式,对s3操作过多 2.对于4k 小io每次都要和s3交互,导致性能非常差。 因此需要通过Cache模块解决以上2个问题。 整体设计 整个dataCache的设计思路,在写场景下能将数据尽可能的合并后flush到s3 读场景上,能够预读1个block大小,减少顺序读对于底层s3的访问频次。从这个思路上该缓存方案主要针对的场景是顺序写和顺序 读,而对于随机写和随机读来说也会有一定性能提升,但效果可能不会太好。 元数据采用2层索引 由于chunk大小是固定的(默认64M),所以Inode中采用maps3ChunkInfoMap用于保存对象存储的位置信息。采用2 0 码力 | 9 页 | 179.72 KB | 5 月前3Curve文件系统元数据Proto(接口定义)
© XXX Page 1 of 15 curve文件系统元数据proto(代码接口定义,已实现)© XXX Page 2 of 15 1、代码结构和代码目录 curve文件系统是相对于curve块设备比较独立的一块,在当前curve项目的目录下,增加一个一级目录curvefs,curvefs下有自己独立的proto\src\test。 2、文件系统proto定义 2.1 mds.proto0 码力 | 15 页 | 80.33 KB | 5 月前3CurveFS S3数据整理(合并碎片、清理冗余)
1 of 3 curvefs s3数据整理(合并碎片、清理冗余)© XXX Page 2 of 3 1. 2. 3. 1. 2. 3. 4. 5. 6. 1. 2. 背景 只考虑单客户端, 单metaserver 为了解决的问题: 客户端在对一个文件的某个部分多次写入后, 同一个chunk会产生很多版本数据; 而客户端在读的时候, 会需要对这些chunk进行筛选和构建 会需要对这些chunk进行筛选和构建, 得到有效的部分, 越是散乱的状态, 就越需要发送更多次读请求至s3. 最后导致无效旧数据的堆积和读请求性能的下降, 所以需要在合适的时候进行重叠元数据和数据的合并 原则是尽力而为, 并不能做到完美 方案 基于一下3个基础的数据结构, 2层索引 s3chuninfolist[index] = [s3chunkinfo(s)] s3chunkinfo { } s3 object命名: chunkid_version_index (index为obj在chunk内的index) 执行步骤 数据整理作为一个后台服务(线程池), 运行于metaserver, 遍历metaserver的inode进行数据整理的尝试, 入队inodekey, 如果是已有inode任务, enqueue直接返回, 不入队 任务开始执行, 尝试根据inodekey获取inode信息0 码力 | 3 页 | 101.58 KB | 5 月前3Curve文件系统元数据持久化方案设计
© XXX Page 1 of 12 元数据持久化© XXX Page 2 of 12 前言 Raft Log Raft Snapshot 持久化文件 key_value_pairs 其他说明 实现 1、inode、entry 的编码 2、KVStore Q&A 单靠 redis 的 AOF 机制能否保证数据不丢失? redis 的高可用、高可扩方案? redis + muliraft 存在的问题? redis 改造 vs 自己实现? redis 中哈希表实现的优点? 参考 前言 根据之前讨论的结果,元数据节点的架构如下图所示,这里涉及到两部分需要持久化/编码的内容: Raft Log:记录 operator log Raft Snapshot:将内存中的数据结构以特定格式 dump 到文件进行持久化© XXX Page 3 of 12 Raft Log +------+- -----------+---------+ 持久化文件 字段 字节数 说明 CURVEFS 7 magic number(常量字符 "CURVEFS"),用于标识该文件为 curvefs 元数据持久化文件 version 4 文件版本号(当文件格式变化时,可以 100% 向后兼容加载旧版持久化文件) size 8 键值对数量 key_value_pairs / 键值对(当 size 为0 码力 | 12 页 | 384.47 KB | 5 月前3古月《ROS入门21讲》15.服务数据的定义与使用.pdf
15.服务数据的定义与使用 主 讲 人 : 古 月 服务模型 自定义服务数据 ➢ ➢message_generation message_runtime ➢ • find_package( …… message_generation) • add_service_files(FILES0 码力 | 9 页 | 1.29 MB | 1 年前3FIT2CLOUD CloudExplorer 产品白皮书 v1.7
FIT2CLOUD 的产品与解决方案涵盖软件测试、云原生运行时、多云管理、安全合规、 数据分析可视化、内容管理,其旗舰产品包括:MeterSphere 开源持续测试平台、 KubeOperator 开源容器平台、CloudExplorer 多云管理平台、JumpServer 开源堡垒机、 DataEase 开源数据可视化分析平台、Halo 开源博客/CMS 系统。FIT2CLOUD 旗下的开 源 .......... 12 1.5.4 实现运营分析、IT 投入透明化及时回收优化.............................................12 1.5.5 建立数据中心 IT 体系演进框架支持迭代扩展建设.....................................12 1.6 各行业客户案例........................... .........................................................................................51 3.5 集成与被集成能力...............................................................................................0 码力 | 60 页 | 0 Bytes | 1 年前3openEuler 24.03 LTS 技术白皮书
openEuler 作为一个操作系统发行版平台,每两年推出一个 LTS 版本。该版本为企业级用户提供一个安全稳定可靠的操作系统。 openEuler 也是一个技术孵化器。通过每半年 发布一个创新版,快速集成 openEuler 以及其他社区的最新技术成果,将社区 验证成熟的特性逐步回合到发行版中。这些新特性以单个开源项目的方式存在于社区,方便开发者获得源代码,也方便其他开源社 区使用。 社区中 发布面向服务器、云原生、边缘和嵌入式场景的全场景操作系统版本,统一基于 Linux Kernel 6.6 构建, 对外接口遵循POSIX标准,具备天然协同基础。同时openEuler 24.03 LTS版本集成分布式软总线、KubeEdge+边云协同框架等能力, 进一步提升数字基础设施协同能力,构建万物互联的基础。 面向未来,社区将持续创新、社区共建、繁荣生态,夯实数字基座。 夯实云化基座 • 容器操作系统 • SDK 镜像:提供对应硬件的计算加速工具包和开发环境,用户可进行 Ascend CANN 或 NVIDIA CUDA 等应用的开发和调试。同时, 可在该类容器中运行高性能计算任务,例如大规模数据处理、并行计算等。 • AI 框架镜像:用户可直接在该类容器中进行 AI 模型开发、训练及推理等任务。 • 模型应用镜像:已预置完整的 AI 软件栈和特定的模型,用户可根据自身需求选择相应的模型应用镜像来开展模型推理或微调0 码力 | 45 页 | 6.18 MB | 1 年前3
共 135 条
- 1
- 2
- 3
- 4
- 5
- 6
- 14