2022年美团技术年货 合辑2 YOLOv6 量化感知蒸馏框架 针 对 YOLOv6s, 我 们 选 择 对 Neck(Rep-PAN)输 出 的 特 征 图 进 行 通 道 蒸 馏 (channel-wise distillation, CW)。另外,我们采用“自蒸馏”的方法,教师模型是 FP32 精度的 YOLOv6s,学生模型是 INT8 精度的 YOLOv6s。下图 7 是一个简化 示意图,只画出了 Neck Nsight-systems: https://docs.nvidia.com/nsight-systems/UserGuide/index.html [6] Channel-wise Knowledge Distillation for Dense Prediction, https://arxiv.org/ abs/2011.13256 [7] YOLOv6: A Single-Stage Object Detection https://tech.meituan.com/2021/07/08/multi-business-modeling.html. [7] Tang, Jiaxi, and Ke Wang. “Ranking distillation: Learning compact ranking models with high performance for recommender system.” Proceedings0 码力 | 1356 页 | 45.90 MB | 1 年前3
Blender v4.1 Manualapplication-independent set of baked geometric results. This ‘distillation’ of scenes into baked geometry is exactly analogous to the distillation of lighting and rendering scenes into rendered image data0 码力 | 6263 页 | 303.71 MB | 1 年前3
动手学深度学习 v2.0Socher, R. (2018). A closer look at deep learn‐ ing heuristics: learning rate restarts, warmup and distillation. arXiv preprint arXiv:1810.13243. [Graves, 2013] Graves, A. (2013). Generating sequences with0 码力 | 797 页 | 29.45 MB | 1 年前3
共 3 条
- 1













