积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(350)C++(231)Python(61)综合其他(29)系统运维(27)人工智能(21)云计算&大数据(19)Julia(18)数据库(17)Conda(17)

语言

全部英语(348)中文(简体)(58)中文(繁体)(24)zh(5)日语(3)中文(简体)(2)英语(2)[zh](1)西班牙语(1)

格式

全部PDF文档 PDF(420)其他文档 其他(11)PPT文档 PPT(10)DOC文档 DOC(8)TXT文档 TXT(1)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 450 个.
  • 全部
  • 后端开发
  • C++
  • Python
  • 综合其他
  • 系统运维
  • 人工智能
  • 云计算&大数据
  • Julia
  • 数据库
  • Conda
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • zh
  • 日语
  • 中文(简体)
  • 英语
  • [zh]
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Dynamic Model in TVM

    rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Models with with dynamism ● Control flow (if, loop, etc) ● Dynamic shapes ○ Dynamic inputs: batch size, image size, sequence length, etc. ○ Output shape of some ops are data dependent: arange, nms, etc. ○ Control models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim in typing ● Use shape function to compute the type at runtime ● Virtual
    0 码力 | 24 页 | 417.46 KB | 6 月前
    3
  • pdf文档 Distributed Ranges: A Model for Building Distributed Data Structures, Algorithms, and Views

    std::ranges::transform_view(range, add_two); Ranges LibraryRanges Library - Have begin() and end() - Often have size() - Random access: access any element at random in constant time - Contiguous: a contiguous block algorithm(1.0f, 3, data); // Send data to proc. 1 MPI_Send(values.data(), values.size(), MPI_FLOAT, 1, 0, MPI_COMM_WORLD); // Data is now sent. Process 0 Process 1 algorithm(1.0f, 3, data); // Send data to proc. 1 MPI_Send(values.data(), values.size(), MPI_FLOAT, 1, 0, MPI_COMM_WORLD); // Data is now sent. // Allocate space for
    0 码力 | 127 页 | 2.06 MB | 6 月前
    3
  • pdf文档 C++ Memory Model: from C++11 to C++23

    Memory Model C++11 – C++23About Me: alex.dathskovsky@speedata.io www.linkedin.com/in/alexdathskovsky https://www.cppnext.comAlex Dathskovsky | alex.dathskovsky@speedata.io | www.linkedin.com/in/a
    0 码力 | 112 页 | 5.17 MB | 6 月前
    3
  • pdf文档 Back to Basics Casting

    comAn Introduction struct region { int size; }; void init_region(char* backing_buffer, size_t buffer_size ) { if(buffer_size < current_region.size) { LOG(“Buffer size too small”); return; } //other init }An Introduction struct region { int size; }; void init_region(char* backing_buffer, size_t buffer_size ) { if(buffer_size < current_region.size) { LOG(“Buffer size too small”); return; } //other init Introduction struct region { int size; }; void init_region(char* backing_buffer, size_t buffer_size ) { if(buffer_size < (size_t)current_region.size) { LOG(“Buffer size too small”); return; } //other
    0 码力 | 117 页 | 1.57 MB | 6 月前
    3
  • pdf文档 Heterogeneous Modern C++ with SYCL 2020

    Significant adoption in Embedded, Desktop and HPC markets Improved programmability, smaller code size, faster performance Based on C++17, backwards compatible with SYCL 1.2.1 Simplify porting of standard sycl::buffer bufA{dA.data(), sycl::range{dA.size()}}; sycl::buffer bufB{dB.data(), sycl::range{dB.size()}}; sycl::buffer bufO{dO.data(), sycl::range{dO.size()}}; gpuQueue.submit([&](sycl::handler sycl::read_only); sycl::accessor out(bufO, cgh, sycl::write_only); cgh.parallel_for(sycl::range{dA.size()}, [=](id<1> i){ out[i] = inA[i] + inB[i]; }); }); gpuQueue.wait_and_throw();
    0 码力 | 114 页 | 7.94 MB | 6 月前
    3
  • pdf文档 Unity for Human Beings

    that I can modify in the Inspector pane. I put a check mark in the Best Fit box and changed the Max Size to be 100. Now, I’ll run the project. Zenva Academy – Online courses on game, web and mobile We will make the Canvas component display at the same resolution as the Camera and set screen size parameters. Zenva Academy – Online courses on game, web and mobile app development ©2016 Zenva Page 33 The Content Panel should have the Content from the Viewport in it. Now, change the size of the Data to be 7. Zenva Academy – Online courses on game, web and mobile app development
    0 码力 | 239 页 | 27.39 MB | 11 月前
    3
  • pdf文档 Template-Less Meta-Programming

    variant::variant(T&& t) : index{find_index} // Powered by TMP , // ... { } template<size_t I, class... Ts> constexpr auto get(tuple&&) noexcept -> typename tuple_element::variant(T&& t) : index{find_index} // Powered by TMP , // ... { } template<size_t I, class... Ts> constexpr auto get(tuple&&) noexcept -> typename tuple_element::variant(T&& t) : index{find_index} // Powered by TMP , // ... { } template<size_t I, class... Ts> constexpr auto get(tuple&&) noexcept -> typename tuple_element
    0 码力 | 130 页 | 5.79 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    writing styles 59 For few-shot prompting with classification tasks, mix up the classes 59 Adapt to model updates 60 Experiment with output formats 60 JSON Repair 61 Working with Schemas 62 Experiment When thinking about a large language model input and output, a text prompt (sometimes accompanied by other modalities such as image prompts) is the input the model uses to predict a specific output. You can be complicated. Many aspects of your prompt affect its efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure, and context
    0 码力 | 68 页 | 6.50 MB | 7 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer 2/24 2/25 4/25 75% 60% 10% 21% 15% 0% Details on Page 293 USA – LLM #1 China USA – LLM #2 AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 POCOAS in C++: A Portable Abstraction for Distributed Data Structures

    PGAS Model, RDMA Building Remote Pointer Types Building Distributed Data Structures Extending to GPUsThis Talk Background: how do we write a program for a supercomputer? Introduce PGAS Model, RDMA PGAS Model, RDMA Building Remote Pointer Types Building Distributed Data Structures Extending to GPUsThis Talk Background: how do we write a program for a supercomputer? Introduce PGAS Model, RDMA Extending to GPUsThis Talk Background: how do we write a program for a supercomputer? Introduce PGAS Model, RDMA Building Remote Pointer Types Building Distributed Data Structures Extending to GPUsWhat
    0 码力 | 128 页 | 2.03 MB | 6 月前
    3
共 450 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 45
前往
页
相关搜索词
DynamicModelinTVMDistributedRangesforBuildingDataStructuresAlgorithmsandViewsC++Memoryfrom11to23BackBasicsCastingHeterogeneousModernwithSYCL2020UnityHumanBeingsTemplateLessMetaProgrammingGooglePromptEngineeringv7TrendsArtificialIntelligencePOCOASPortableAbstraction
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩