Curve支持S3 数据缓存方案© XXX Page 1 of 9 Curve支持S3 数据缓存方案© XXX Page 2 of 9 版本 时间 修改者 修改内容 1.0 2021/8/18 胡遥 初稿 背景 整体设计 元数据采用2层索引 对象名设计 读写缓存分离 缓存层级 对外接口 后台刷数据线程 本地磁盘缓存 关键数据结构 详细设计 Write流程 Read流程 ReleaseCache流程 小io每次都要和s3交互,导致性能非常差。 因此需要通过Cache模块解决以上2个问题。 整体设计 整个dataCache的设计思路,在写场景下能将数据尽可能的合并后flush到s3上,在读场景上,能够预读1个block大小,减少顺序读对于底层s3的访问频次。从这个思路上该缓存方案主要针对的场景是顺序写和顺序 读,而对于随机写和随机读来说也会有一定性能提升,但效果可能不会太好。 元数据采用2层索引 由于chun0 码力 | 9 页 | 179.72 KB | 6 月前3
Curve文件系统元数据管理4、curve文件系统的元数据内存组织 4.1 inode定义: 4.2 dentry的定义: 4.3 内存组织 5 元数据分片 5.1 分片方式一:inode和dentry都按照parentid分片 5.1.1 场景分析 查找:查找/A/C。 创建:/A/C不在,创建/A/C 删除文件:删除/A/C 删除目录:删除/A rename:rename /A/C到/B/E symbolic link: hardlink:生成一个hardlink /A/C到/B/E hardlink:生成一个hardlink /B/E,指向文件/A/C 6、curve文件系统的多文件系统的设计 1、设计一个分布式文件系统需要考虑的点: 文件系统的元数据是否全缓存? 元数据持久化在单独的元数据服务器上?在磁盘上?在volume上? inode+dentry方式?当前curve块存储的kv方式? 是否有单独的元数据管理服务器? 2、其他文件系统的调研总结 小文件优化 空间管理单位 数据持久化 其他© XXX Page 3 of 24 moosefs(mfs) 有元数据服务器 全内存 fsnode → hashtable(inode id) fsedge → hashtable (parent inode + name) 全内存 chunk → hashtable(chunk id) log + dump record 差 否 chunk0 码力 | 24 页 | 204.67 KB | 6 月前3
Curve核心组件之snapshotclone不影响转储 • 增量转储,第一次全量转储s3之后,后续只需转储增量部分 • 高可用,快照任务中断自动拉起继续转储快照和克隆的特点 • 克隆的定义 • 克隆是指从卷复制出卷的功能,提供快速的复制卷的能力。 • 这里的克隆还包括从快照回滚的功能 • 克隆的特点 • 支持Lazy和非Lazy两种模式克隆 • 支持从快照克隆和从镜像(卷)克隆 • 支持从快照回滚 • 高可用,克隆任务中断自动拉起继续克隆快照克隆服务器架构 chunkMap 快照chunk映射表 MetaObject: • 保存完整的chunk数据,大小为一个 Chunk的大小,即16MB DataObject: • 打快照时读取当前目标卷的所有快照的全 部metaObject • 根据本快照的chunk映射表,判断当前的 快照chunk是否需要转储 增量转储原理:快照在CHUNKSERVER上的数据组织 快照chunk和普通chunk,都是 不进行数据复制,而是提供额外的Flatten接口, 完成数据复制。 适用场景: 适用于从镜像快速创建云主机场景 非Lazy克隆 较慢,分钟级: Cloned状态可用,即完成整个数据克隆,才从临 时目录rename,用户才可见。 无Lazy Alloc chunk: 安装元数据时即分配好chunk。 无额外接口: 无需Flatten接口。 适用场景: 适用于从云主机或快照创建镜像CHUNKSERVER端克隆实现-CHUNKFILE0 码力 | 23 页 | 1.32 MB | 6 月前3
CurveFS方案设计关键点 元数据设计 数据结构 索引设计 文件空间管理 开发计划及安排 背景 为更好的支持云原生的场景,Curve需要支持高性能通用文件系统,其中高性能主要是适配云原生数据库的场景。当前Curve是实现了块存储,向上提供块设备服务,CurveFS会基于此实现。第一阶段的目标是实现 满足数据库场景的文件接口。 调研 开源fs 当前对已有的开源分布式文件系统进行了调研,主要包括系统架构, 的管理形式?留有租户这个概念),直接基于 namespace 开发: a. 功能 软/硬链接:目前是都不支持的。软链接可以通过标识文件类型解决;由于 prefix + parentid + filename 作为 key , filename 直接和 fileInfo 关联,硬链接无法支持 b. 性能 list:list在通用文件系统中是很常见的操作,目前 curve 的元数据缓存使用的 扩展性、可用性和可靠性与元数据节点一致 对比结论 CurveFS 近期要能支持mysql所要接口,长期需要支持通用文件接口。 kv 虽然改造简单,短期内对基本功能的支持没有问题,但这个架构不利于 Curve 长期的规划和演进,因此选择通用的 dentry,inode 两层映射的元数据结构。对于 fs© XXX Page 4 of 14 的场景,元数据的量比块存储场景会多很多,长期看元数据节点的设计也是需要满足高可用、高可扩、高可靠的。0 码力 | 14 页 | 619.32 KB | 6 月前3
Curve文件系统元数据持久化方案设计文件都可以写到指定的目录) redis 改造 vs 自己实现? 结论:从目前元数据持久化的需要来看,更倾向于自己实现,理由如下: redis 目前不支持单独持久化 redis 中的某个 DB (一个 redis 实例可包含多个 DB) 或数据结构,这对于在要使用 multiraft 的场景下,每个 raft 实例需要独立的快照并不合适 如果改造 redis,初步评估了下,其工作量要比自己实现持久化的逻辑要大一些,改造主要是为了让 造主要是为了让 redis 提供单独 dump/load 一个 DB 的功能: 如果改造,dump/load 的逻辑都得动,而且会牵扯到一些其他逻辑(如主从复制,因为 redis 主从全量复制发送的就是一整个 RDB 文件,即使我们不需要这个功能,这部分代码也是有耦合的)© XXX Page 11 of 12 1. 2. 3. 如果自己实现,只是一个简单的 sava/load0 码力 | 12 页 | 384.47 KB | 6 月前3
Raft在Curve存储中的工程实践raft和braft 03 raft在Curve中的应用 05 Q&A 04 Curve对raft的优化项目背景 Curve是一个 高性能、更稳定、易运维 的 云原生 分布式存储系统,支持 块存储 和 文件存储 2018~2021 Curve块存储 2021~2022 Curve文件存储 • 基于Openstack构建云计算平台 • 底层存储使用Ceph块存储 • 稳定性挑战 对接Kubernetes为其提供RWO、RWX等类 型的持久化存储卷 • 对接PolarFS作为云原生数据库的高性能存储 底座,完美支持云原生数据库的存算分离架 构 • Curve作为云存储中间件使用S3兼容的对象 存储作为数据存储引擎,为公有云用户提供 高性价比的共享文件存储 • 支持在物理机上挂载使用块设备或FUSE文件 系统开源社区 社区运营 生态共建 开源共建 源码兜底 技术领先 目标 方法 raft在Curve中的应用 05 Q&A 04 Curve对raft的优化Curve块存储RAFT应用 Curve块存储 • 高性能、更稳定、易运维 • 支持NBD(network block device)、iscsi • 支持RDMA和SPDK Curve块存储架构 • client:接受用户请求。 • mds:保存元数据,包括topo信息、块设备信息、 数据分布信息等,持久化到etcd中。0 码力 | 29 页 | 2.20 MB | 6 月前3
新一代云原生分布式存储新一代云原生分布式存储—Curve 上 李小翠 网易数帆存储团队分布式存储介绍 01 存储的发展 | 分布式存储的分类 | 分布式存储的要素 02 03 04 Ceph 架构简介 | 场景介绍 | 使用中的问题 Curve 架构简介 | 数据对比 | 应用情况 FAQ 答疑存储的发展 互联网时代,数据大爆炸 大型主机 成本高 单点问题 扩容困难 各存储设备通过网络互联 底层构建在分布式存储之上 云原生的概念: 易用性:跨平台,超融合,弹性 小型主机 容量有限分布式存储的分类 按照各种应用场景所需的存储接口分类 对象 存储 文件 存储 块存储 接口为简单的 Get、PUT、DEL 和其他扩展 通常意义是支持 POSIX 接口 传统意义的文件系统: Ext4 对指定地址空间进行随机读写 传统意义的块存储:磁盘分布式存储的要素 如何构建分布式文件系统? 存储的发展 | 分布式存储的分类 | 分布式存储的要素 02 03 04 Ceph 架构简介 | 块存储场景 | 使用中的问题 Curve 架构简介 | 数据对比 | 应用情况 FAQ 答疑架构简介 — 总体架构 开源分布式存储界的扛把子 支持块存储、文件存储、对象存储架构简介 — 概念介绍 object:存储单元 PG:Placement Groups0 码力 | 29 页 | 2.46 MB | 6 月前3
Curve 分布式存储设计无法满足高的性能需求Curve的设计目标 1. Curve云原生软件定义存储 2. Curve块存储 3. Curve文件存储 4. 高性能,易运维,云原生Curve块存储 1. 高性能分布式共享数据库场景 2. Curve块存储提供底层分布式共享存储 3. Polardb for PostgreSQL提供上层高性能数 据库服务 4. 性能测试 1. benchmarkSQL 每分钟事务数提升39% 2. pgbench 延迟降低21% TPS提升26% 研究现状Curve块存储 1. 分布式块存储服务 2. KVM块存储服务 3. iSCSI协议 4. 容器云块存储(CSI) 应用场景Curve块存储 1. 高可用性/高可靠性 (易运维) 2. RAFT一致性协议 3. CopySet分配算法 4. 拓扑结构 5. 高性能 6. chunkfilepool (降低写放大) 兼顾性能与容量的机器学习 场景 2. 快速跨云弹性发布的业务 3. 低成本大容量需求的业务 4. 中间件冷热数据自动分离 5. S3和POSIX统一访问需求 主要挑战和支持场景Curve Roadmap 1. 架构 1. 文件存储支持分布式缓存、完善冷热数据分层存储能力 2. 完善混合云、公有云上部署架构 3. 完善高性能3副本存储引擎,支持混合盘 4. 文件存储支持数据存储到HDFS、rados等引擎0 码力 | 20 页 | 4.13 MB | 6 月前3
Curve设计要点新一代分布式存储系统 Curve 李小翠Curve 是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟 • 可支撑储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行一年多,线上异常演练 • 已开源 • github主页: https://opencurve.github.io/ • github代码仓库: 01 02 03 04 总体设计 系统特性 近期规划背景 • 多个存储软件:SDFS、NEFS、NBS • 已有的开源软件:Ceph • 不能胜任性能、延迟敏感的场景 • 异常场景抖动较大(比如慢盘场景) • 去中心节点设计在集群不均衡的情况下需要人工运维 • 基于通用分布式存储构建上层存储服务背景 01 02 03 04 总体设计 系统特性 近期规划基本架构 • 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 副本一致性 • 客户端 Client 对元数据增删改查 对数据增删改查基本架构 • 快照克隆服务器 独立于核心服务 储到支持S3接口的 对象存储,不限制数量 异步快照、增量快照 从快照/镜像克隆 ( lazy/非lazy ) 从快照回滚数据组织形式 • 底层 可用性 / 可靠性 扩展性 / 负载均衡 向上提供无差别文件流0 码力 | 35 页 | 2.03 MB | 6 月前3
Curve质量监控与运维 - 网易数帆与 运 维 秦 亦 1/33背景 01 02 03 04 Curve质量控制 Curve监控体系 Curve运维体系Curve 是网易针对块存储、对象存储、云原生数据库、EC等 多种场景自研的分布式存储系统: 高性能、低延迟 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行近两年 已完整开源 • github主页: https://opencurve 容易发现隐藏的问题,手工测试无法做到频繁触发 测试用例可以持续积累,成为代码质量的。 目前Curve的 异常测试以及混沌测试 均实现了自动化。 15/33测试用例的编写方法 很多情况下,待测试场景会包含多个变化的参数,每个参数有若干个典 型值;如果将用例覆盖所有可能的情况,总用例数将达到不可接受的程 度。因此,需要通过组合测试的方法,尽量用较少的用例数量覆盖绝大 多数情况: 两因素组合测试 的测试用例: Given —— 测试上下文 When —— 执行一系列操作 Then —— 得到一系列可观察的后果,即需要检测的断言·异常自动化测试实践 Robotframework 支持python关键字,灵活定义测试 完善的测试报告 完美兼容Jenkins ci 丰富的第三方库(ssh, paramiko, request等) 用例设计原则 无需绑定特定环境,“随意拉起”0 码力 | 33 页 | 2.64 MB | 6 月前3
共 28 条
- 1
- 2
- 3













