Greenplum 6: 混合负载的理想数据平台Greenplum 6: 混合负载的理想数据平台 高小明 全球领先的开源MPP大数据平台 可扩展性 ACID事务 VS 分布式 简单易用 VS 结构化 半结构非结构化 VS 事务型 分析型 VS MPP - massively parallel processing - 大规模并行处理 master standby primary 表‘SALES’ 表‘SALES’ ■ 3.5倍的TPS提升 ■ master CPU使用率大幅提高 ■ TPS随着master CPU核数增加同 步提高 ■ 22万 TPS (192核单机部署 ,master+18 segments) 34 Pivotal Confidential–Internal Use Only TPC-B基准测试:UPDATE ■ 得益于并发更改特性 ■ 70倍的TPS提升 ical processing - 混合事务/分析处理 Gartner技术成熟度曲线 OLTP-OLAP独立部署 OLTP数据库 OLAP数据仓库 ■ 实时性 ■ 数据同步复杂性 ■ 应用复杂性 HTAP HTAP = ? ■ 卓越的OLAP特性 ■ 出色的OLTP特性 ■ 多态存储 ■ 有效的并发和资源管理 OLTP-OLAP独立部署 OLTP数据库 OLAP数据仓库0 码力 | 52 页 | 4.48 MB | 1 年前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在不同操作系统、 不同芯片的环境,适合本地部署、多云环境(公有云和私有云)中。Greenplum 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 白皮书 7 白皮书 | 7 1. 引领内核创新 云原生调度增强:针对云场景在线和离线业务混合部署场景,创新 CPU 调度算法保障在线业务对 CPU 的实时抢占及抖 动抑制,创新业务优先级 00M 内存回收算法保障在线业务安全可靠运行。 • 新文件系统 EulerFS:面向非易失性内存 KubeOS:云原生场景,实现 OS 容器化部署、运维,提供与业务容器一致的基于 K8S 的管理体验。 • 安全容器方案:iSulad+shimv2+StratoVirt 安全容器方案,相比传统 docker+qemu 方案,底噪和启动时间 优化 40%。 • 双平面部署工具 eqqo:ARM/X86 双平面混合集群 0S 高效一键式安装,百节点部署时间<15min。 3. 探索场景创新0 码力 | 17 页 | 2.04 MB | 1 年前3
Pivotal Greenplum 5: 新一代数据平台Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在多云环境(公 有云和私有云)中,也适用不同的本地配置。其大规模并行处理 (MPP) SQL 的设计核心是一个称为 GPORCA 的新一代查 询优化器。GPORCA 专为满足在多结构数据环境中进行高级分析的需求而设计,能够处理多种并发混合工作负载的复杂查 询。与旧式 MPP 数据库中常用的传统 RDBMS 查询优化器相比,GPORCA 可以更轻松地从最新版本(未来 的 PostgreSQL 9.X 和 10)中纳入 PostgreSQL 新增功能。 新一代 数据平台 IT 人员 开发 人员 业务 分析师 数据 科学家 灵活 部署 数据源和数据管道 Spring Cloud Data Flow ETL 本地存储 HDFSS 云对象 存储 GemFire Spark 其他 RDBMSes 多结构数据 PIVOTAL GREENPLUM 可根据客户需求在任何位置运行。借助这种“不 受限于基础架构”的方法,可以在本地或多云环境(私有云或公有云)中部署同一类型的分析数据库。 无论在商业化的 Pivotal Greenplum 或是开源的 Greenplum Database 中,这种不受限于基础架构的方法的大部分优势都 具有同样强大的作用。在 Greenplum Database 上部署分析系统时,用户还可获得一些额外的优势: • Greenplum Database0 码力 | 9 页 | 690.33 KB | 1 年前3
Greenplum 精粹文集供了编译后的模块开箱即用,如:oraface、postgis、pgcrypt 等, 对于其它模块,用户可以自行将 contrib 下的代码与 Greenplum 的 include 头文件编译后,将动态 so 库文件部署到所有节点就可进行测 试使用了。有些模块还是非常好用的,例如:oraface,基本上集成了 Oracle 常用的函数到 Greenplum 中,曾经在一次 PoC 测试中,用户 提供的 22 条 Oracle 分布式事务两阶段提交”, Greenplum 还研发了非常多的高级数据分析管理功能和企业级管理模 块,如下这些功能都是 Postgresql 没有提供的: ·外部表并行数据加载 ·可更新数据压缩表 ·行、列混合存储 ·数据表多级分区 ·Bitmap 索引 ·Hadoop 外部表 ·Gptext 全文检索 ·并行查询计划优化器和 Orca 优化器 ·Primary/Mirror 镜像保护机制 ·资源队列管理 core 的能力),但即使是这样, 在那个测试中,测试性能也大幅低于 Greenplum(那个测试中,各厂 商基于客户提供的完全相同的硬件环境,Greenplum 是唯一一家完成 所有测试的,特别在混合负载测试中,Greenplum 的 80 并发耗时 3 个多小时就成功完成了,其它厂商大都没有完成此项测试,唯一完成 的一家耗时 40 多小时)。 Big Date2.indd 9 16-11-220 码力 | 64 页 | 2.73 MB | 1 年前3
Greenplum 介绍Greenplum 介绍 Greenplum 是全球领先的开源大数据平台,是能够提供包含实时处理、弹性扩容、混合负载、云 原生和集成数据分析等强大功能的大数据引擎。 著名分析机构 Gartner 2019 年报告中,在经典数据分析领域 Greenplum 全球排名第三,实时分 析领域全球排名并列第四。Greenplum 是两个领域中排名前十的产品中的唯一一款开源产品。 m 还兼容 SQL 标准,具备强大、 高效、安全的 PB 级结构化、半结构化和非结构化数据存储、处理和实时分析能力,可部署于企 业裸机、容器、私有云和公有云中。值得一提的是,作为 OLAP 型的大数据平台, Greenplum 同 时还能够支持涵盖 OLTP 型业务的混合负载,从而帮助客户真正打通业务-数据-洞见-业务的闭环。 目前,Greenplum 已经为国内外各行各业客户所广泛使用 年开源以来,更是吸引了包括阿里云、百度云、中移动、旷世、去哪儿 网、易观、腾云科技、饿了么、金风科技在内大量开源用户。 Greenplum 大数据平台的优势 ● 一次打包到处运行的平台:部署灵活,不受限于硬件环境和平台,无论裸机、私有云、公 有云均可部署。硬件环境的普适性,提供了极大的灵活性,解放了硬件平台的制约和绑定, 从而允许客户灵活选择最适合的方案,降低未来的迁移代价,而开发、运维人员无需要学 习新的数据库处理技术,人力成本也能够大大降低。0 码力 | 3 页 | 220.42 KB | 1 年前3
Pivotal Greenplum 最佳实践分享1000000000 kernel.sem = 250 512000 100 2048 Redhat 6.2以后,内核增加了hugepage大页内存管理,关闭hugepage可以提高混合负载管理性能 设置办法:修改local脚本 For SUSE /etc/init.d/boot.local For RHLE /etc/rc.d/rc.local 追加内容: 采用列存储,其它表采用行存储 数据压缩: • 在金融业,行压缩的数据压缩比在1:6左右,一般采用zlib5级压缩 • 数据压缩对于高并发查询分析系统可以大幅降低IO消耗,提升并行处理、混合负载的性能 分布键使用: • 尽量采用一个常用关联字段作为分布键,例如账号、客户号,这个可以提高关联条件的命中率,减少关联时数据重分布 (主要对大表) • 选用分布键同时考虑数据 eap表的增备(是否发生过变化) 可指定并发数(同时多张表备份),可指定编码Encoding 乐观锁设计——单表尝试加锁失败即认为该表本次备份失败 命令简单易用——单命令无需部署,参数基本保持与gpcrondump一致,自劢完成全部必要的准备工作 恢复可选表清单,可指定条件恢复部分数据,可恢复到指定增备日期 Greenplum集群之间数据传输0 码力 | 41 页 | 1.42 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1.................................................................................. - 263 - 第十二章:安装部署与初始化 .............................................................................................. 系统的重要组件,在用户执行查询时,每个 Instance 都需要执行相 应的处理,网络层涉及到 Instance 之间的通信和数据传输,网络层可以使用标准的 以太网协议。不要认为网络只是连通作用,请按照 GP 的安装部署要求,必须使用万兆 网络作为内部互联网络,否则,一定会遭受很多网络方面的困扰。 在缺省情况下,网络层使用 UDPIFC 协议。这是经过改善的 UDP 协议,在 UDP 协 议的基础上增强了数据包校验,其可靠性与 定的网络环境,使用 UDPIFC 协议。 冗余与故障切换 GP 提供了避免单点故障的部署选项。本节讲述 GP 的冗余组件。 Instance 镜像 Master 镜像 网络层冗余 Instance 镜像 在部署 GP 系统时,可以选择配置 Mirror,如果初始化时没有配置 Mirror,后 期也可以再次添加 Mirror,当然,如果要删除已有的0 码力 | 416 页 | 6.08 MB | 1 年前3
Greenplum数据库架构分析及5.x新功能分享高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) 多种压缩,多级分区表 索引(B树,位图,GiST) 安全性 语言支持 标准SQL支持,SQL 2003 OLAP扩展 支持 MapReduce 扩展编程语言 (Python0 码力 | 44 页 | 8.35 MB | 1 年前3
Greenplum 分布式数据库内核揭秘和线性拓展能力,内置并行存储、并行通信、并行计算和并行优化功能,兼容 SQL 标准。拥有独 特的高效的 ORCA 优化器,具有强大、高效的 PB 级数据存储、处理和实时分析能力,同时支持 OLTP 型业务的混合负载。 Greenplum 分布式数据库简介 5 Confidential │ ©2021 VMware, Inc. Greenplum 集群化概述 Coordinator/Segment,0 码力 | 31 页 | 3.95 MB | 1 年前3
Greenplum on Kubernetes
容器化MPP数据库Interconnect高速网络 Segment主机部署多个Segment实例 (Primary Segment和Mirror Segment) Greenplum 部署方案 ● Master节点和Standby Master分机部署 ● Primary Segment节点和Mirror Segment节点分机部署 ● Mirroring部署方案 Segment Instance Segment ● 容器资源分配 ○ CPU ○ 内存 ○ 磁盘 ● 容器间网络互联 ○ 本机网络 ○ 跨机网络 ● 容器化Greenplum部署策略 ○ Master部署策略 ○ Primary Segment部署策略 ○ Mirror Segment部署策略 ● 容器化Greenplum运维管理 ○ 故障检测及恢复 ○ 升级扩容 ● 容器化Greenplum存储管理 ○ 容器本地存储易失性 ● 容器资源分配 ○ CPU ○ 内存 ○ 磁盘 ● 容器间网络互联 ○ 本机网络 ○ 跨机网络 ● 容器化Greenplum部署策略 ○ Master部署策略 ○ Primary Segment部署策略 ○ Mirror Segment部署策略 ● 容器化Greenplum运维管理 ○ 故障检测及恢复 ○ 升级扩容 ● 容器化Greenplum存储管理 ○ 容器本地存储易失性0 码力 | 33 页 | 1.93 MB | 1 年前3
共 16 条
- 1
- 2













