Greenplum on Kubernetes
容器化MPP数据库Kubernetes 容器化MPP数据库 AGENDA 云数据库背景 云数据库实现方案 Greenplum on Kubernetes Greenplum Operator 总结 云数据库背景 云数据库背景 ● 资源变化 ○ 本地资源 → 云 ○ 静态资源 → 弹性需求 ● 数据变化 ○ 内部数据 → 多数据源 ○ 数据规模 → 不易预测 ○ 数据格式 → 半结构化/无模式 ○ 数据隔离 云数据库需求 ● DBasS ○ 自动化运维 ○ 自动化调优 ● 弹性资源管理 ○ 存储资源 ○ 计算资源 ● 安全 ○ 用户数据 ○ 临时文件 ○ 网络传输 ○ 权限控制 ● 跨云 ○ 公有云 ○ 私有云 云数据库实现方案 ● 全新数据库 ○ Snowflake ● 原有数据库架构升级 ○ Vertica Eon Mode ● 容器化数据库+Kubernetes ○ Segment Instance Segment 5 (Mirror) 容器化Greenplum ? + = 容器化Greenplum ● 容器粒度 ○ Segment主机 VS. Segment实例 ● 容器资源分配 ○ CPU ○ 内存 ○ 磁盘 ● 容器间网络互联 ○ 本机网络 ○ 跨机网络 ● 容器化Greenplum部署策略 ○ Master部署策略 ○ Primary0 码力 | 33 页 | 1.93 MB | 1 年前3
基于 Greenplum 打造SaaS化电商服务平台基于GP打造SaaS化电商服务平台 聚水潭 秃鹰 赵坚密 2019.08.10 聚水潭成立于2014年1月,创始人兼CEO骆海东拥有超过二十年传统 及电商ERP的研发和实施部署经验,公司核心管理团队来自于阿里巴 巴、亚马逊、中国平安和麦包包等知名公司。 聚水潭创建之初,以电商SaaS ERP切入市场,凭借出色的产品和服务, 快速获得市场领先地位。随着客户需求的不断变化,如今聚水潭已经 发展成为以SaaS0 码力 | 7 页 | 547.94 KB | 1 年前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum........................................................................................... 8 构筑云化基座 ................................................................................................. ........................................................................................... 11 利用容器实现安全分析 ............................................................................................ 析数据平台 Greenplum,用实践证明了 Greenplum 与支持多样性计算的欧拉开源操作系统完全兼容,是 Greenplum 与中国本地 IT 厂商的深入合作的典型模板,大大丰富了中国本地国产化应用生态。本白皮书着眼介绍了欧拉开源操作系 统平台架构、创新性及核心特点, 同时介绍了 Greenplum 作为一款深受技术爱好者喜爱的、中立的纯开源软件,践行 “Run Everywhere”原则0 码力 | 17 页 | 2.04 MB | 1 年前3
Greenplum 精粹文集要专注在分布式技术中最核心的并行处理技术上面,协调我们下面 的轮子跑的更快更稳才是我们的最终目标。而数据库底层组件就像 车轮一样,经过几十年磨砺,数据库引擎技术已经非常成熟,大可 不必去重新设计开发,而且把数据库底层交给其它专业化组织来开 发(对应到 Postgresql 就是社区),还可充分利用到社区的源源不 断的创新能力和资源,让产品保持持续旺盛的生命力。 这也是我们在用户选型时,通常建议用户考察一下底层的技术支撑 是不 亿条记录做逻辑回归,采用一台小型机耗时约 4 个 多小时,通过部署到 Greenplum 集群中,耗时不到 2 分钟就全部完成 了。以 GPEXT 为例,下图展现了 Solr 全文检索在 Greenplum 中的并 行化风格。 Big Date2.indd 10 16-11-22 下午3:38 Greenplum 精粹文集 11 最 后, 也 许 你 会 有 问 题,Greenplum 采 用 Master-slave 才是计算和加载发生的场所(当然, 在 HA 方面,Greenplum 提供 Standby Master 机制进行保证)。 再进一步看,Master-Slave 架构在业界的大数据分布式计算和云计 算体系中被广泛应用,大家可以看到,现在主流分布式系统都是采 用 Master-Slave 架 构, 包 括:Hadoop FS、Hbase、MapReduce、 Storm、Mesos...... 无一例外都是 Master-Slave0 码力 | 64 页 | 2.73 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1.................... - 39 - 支持的客户端应用 ............................................................................................................ - 39 - GP 的客户端应用程序 ................................. ....................................................................................... - 41 - DB 应用程序接口 .............................................................................................. ............................................................................. - 263 - 第十二章:安装部署与初始化 .............................................................................................. - 2650 码力 | 416 页 | 6.08 MB | 1 年前3
Greenplum 介绍的弹性和线性扩展能力,并内置 并行存储、并行通讯、并行计算和优化技术。同时,Greenplum 还兼容 SQL 标准,具备强大、 高效、安全的 PB 级结构化、半结构化和非结构化数据存储、处理和实时分析能力,可部署于企 业裸机、容器、私有云和公有云中。值得一提的是,作为 OLAP 型的大数据平台, Greenplum 同 时还能够支持涵盖 OLTP 型业务的混合负载,从而帮助客户真正打通业务-数据-洞见-业务的闭环。 Kafka、Hadoop、HIVE、 HBase、S3、Gemfire、各种数据库和文件等,不需要移动数据,避免了数据加载的复杂 性,和其带来的数据不一致的问题。 ● 支持各种数据格式的平台:不管是结构化、半结构化(XML、JSON、KV)还是非结构化, 譬如文本数据、GIS 数据、图数据等。 ● 具有强大内核的平台:Greenplum 具有强大的内核技术,包括数据水平分布、并行查询执 行、专业优化器、线性扩展能力、 、SAS、Talend、Qlik、Tableau、Anaconda、 Microstrategy、Boundless、Zattset、Datometry 等,涵盖 ETL、商业智能、高级分析、可视化、 集成分析、GIS 数据处理、迁移、安全和管理等各个领域。 更多信息请访问 greenplum.cn。0 码力 | 3 页 | 220.42 KB | 1 年前3
Pivotal Greenplum 5: 新一代数据平台..............................................................................................7 架构化查询语言性能提升 ........................................................................................... 大幅度地提高了查询性能。 Pivotal Greenplum 5:新一代数据平台 作为重要的新版本,Pivotal Greenplum 5 带来了多项产品改进和新增功能,在管理数据和对数据库中存储的信息应用数据 科学、分析、报告和数据洞察方法方面,这些功能对大多数客户都很有帮助。Greenplum 解决方案的架构设计目的是管理 非常复杂的查询,以及为符合 ANSI 标准的 SQL 提供强有力的分析改进 GREENPLUM 平台 原生接口 分析应用 用户 JDBC、OBBC Teradata SQL Apache MADlib Python. R、 Java、Perl、C Apache SOLR PostGIS ANSI SQL 其他数据库 SQL ML/统计数据/图形 程序化 文本 地理空间 公有云 私有云 完全 托管云 本地 BI / 报告 自定义应用 机器学习 AI SQL 大规模 并行处理0 码力 | 9 页 | 690.33 KB | 1 年前3
Greenplum 排序算法博文 · 资料 · 文档 · 项目 Greenplum内核揭秘之排序算法 5 ● 内排序算法 ● 外排序算法 ● Greenplum TupleSort ● 排序在Greenplum中的应用 Outline 6 ● 冒泡排序 ● 插入排序 ● 快速排序 ● 堆排序 ● 基数排序 内排序算法 7 快速排序是最常用的排序算法,由Tony Hoare在1959年发明。 快速排序算法的三个步骤: 就越高,需要读取外存的次数也越多,有没有办法在分割阶段就生成大于内存 大小的顺串呢? 归并排序的三个问题 23 替换选择算法 24 Knuth 5.4.1R替换选择算法: ● 1. 初始化阶段,读取输入元组至内存,并建立最小堆。 ● 2. 弹出堆顶元组,输出到顺串文件的缓冲区,并记录该元组的排序键为 lastkey。 ● 3. 读取新元组,如果元组排序键大于等于lastkey,插入堆顶,并调整堆,使其有 . . 1 6 7 8 10 . . . 输 出 缓 冲 区 输 入 缓 冲 区 27 败者树算法(GP目前使用堆): ● 1. 输入每个顺串的第一个记录作为败者树的叶子节点。建立初始化败者树。 ● 2. 两两相比较,父亲节点存储了两个节点比较的败者(节点较大的值);胜利者 (较小者)可以参与更高层的比赛。这样树的顶端就是当次比较的冠军(最小 者)。 ● 3. 调整败者树,当我们0 码力 | 52 页 | 2.05 MB | 1 年前3
Greenplum数据仓库UDW - UCloud中立云计算服务商客户端⼯具访问UDW udw⽀持按照postgresql的客⼾端来访问udw,⽀持udw客⼾端访问,还可以⽀持jdbc、odbc、php、python、psql等⽅式来访问udw。另外,也可以通过图形化的SQL Workbench/J、 Navicat等⼯具来访问udw。 1.1 psql客户端⽅式访问 客户端⽅式访问 下载psql客⼾端 yum install postgresql.x86_64 开发指南 开发指南 1、连接数据库 、连接数据库 udw ⽀持按照 postgresql ⽅式来访问 udw,可以⽀持 jdbc、odbc、php、python、psql 等⽅式来访问 udw。图形化的 pgAdmin、SQL Workbench/J 等⼯具 1.1 psql 客户端⽅式访问 客户端⽅式访问 下载 psql 客⼾端(或者通过控制台下载 udw 客⼾端) yum install (切换到template1数据库) DROP DATABASE product; 3、模式管理 、模式管理 数据库模式(schema)是包含了⼀系列数据库对象(表,数据类型,⾃定义函数)集合的命名容器。⼀个数据库可以有多个模式。不同模式不共享命名空间。public 模式是在创建数据库之后就 会默认创建的,每个⽤⼾都有权限在这个 schema 创建对象,如果不指定 schema 那么就会默认创建到这⾥。0 码力 | 206 页 | 5.35 MB | 1 年前3
Greenplum 6: 混合负载的理想数据平台简单易用 VS 结构化 半结构非结构化 VS 事务型 分析型 VS MPP - massively parallel processing - 大规模并行处理 master standby primary segment mirror segment 6 Pivotal Confidential–Internal Use Only 数据分布: 并行化的根基 最重要的 OLTP数据库 OLAP数据仓库 ■ 实时性 ■ 数据同步复杂性 ■ 应用复杂性 HTAP HTAP = ? ■ 卓越的OLAP特性 ■ 出色的OLTP特性 ■ 多态存储 ■ 有效的并发和资源管理 OLTP-OLAP独立部署 OLTP数据库 OLAP数据仓库 ■ 实时性 ■ 数据同步复杂性 ■ 应用复杂性 43 Pivotal Confidential–Internal0 码力 | 52 页 | 4.48 MB | 1 年前3
共 26 条
- 1
- 2
- 3













