云原生中的数据科学KubeConAsia2018Final
0 码力 | 47 页 | 14.91 MB | 1 年前3构建统一的云原生应用 可观测性数据平台
reserved. 构建统一的云原生应用 可观测性数据平台 DeepFlow在混合云中的实践总结 向阳@云杉网络 2022-04-09 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing 统一的可观测性数据平台 telegraf 看云网更清晰 Simplify the growing complexity. 挑战:数据孤岛、资源开销 数据 孤岛 资源消耗 telegraf 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ① Trace与「非Request scope」的Metrics 例如:响应Request A的实例在一段时间内做了多少次GC? ① 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ② 应用、系统、网络的Metrics之间 例如:某个Servi0 码力 | 35 页 | 6.75 MB | 1 年前3云原生图数据库解谜、容器化实践与 Serverless 应用实操
云原⽣图数据库解谜、容器化实 践与 Serverless 应⽤实操 古思为 ⽅阗 Graph DB on K8s Demystified and its Serverless applicaiton in actions. DEVELOPER ADVOCATE @ MAINTAINER OF KCD China 2021 Nov. 6th @Shanghai 古思为 wey-gu ⻘云科技研发⼯程师 Overview 了解 K8s 上的 Serverless 计算平台搭建实践:OpenFunction K8s 上的图数据库基于 KubeBuilder 的 Operator 实现,解谜图数据库的知识与应⽤ 上⼿ K8s 上的云原⽣图数据库、从零到⼀构建 Serverless 架构的智能问答助⼿ siwei.io/talks/2021-KCD laminar.fun/talks/2021-KCD com/OpenFunction/samples 图数据库简介 什么是图? 什么是图数据库? 为什么我们需要⼀个专⻔的数据库? 什么是图? "以图结构、图语义来⽤点、边、属性来查询、表示存 储数据的数据库 wikipedia.org/wiki/graph_database 了解更多关于 什么是图数据库 什么是图数据库 为什么需要图数据库? 传统数据库 图数据库 图模型的结构 图语义的查询 性能0 码力 | 47 页 | 29.72 MB | 1 年前3Volcano加速金融行业大数据分析平台云原生化改造的应用实践
Volcano加速金融行业大数据分析平台 云原生化改造的应用实践 汪 洋, 华为云 Volcano 社区核心贡献者 大数据平台云原生面临的挑战 传统大数据平台云原生化改造成为必然趋势 大数据分析、人工智能等批量计算场景深度应用于金融场景 作业管理缺失 • Pod级别调度,无法感知上层应用 • 缺少作业概念、缺少完善的生命周期的管理 • 缺少任务依赖、作业依赖支持 调度策略局限 计算密集,资源波动大,需要高级调度能力 资源规划复用、异构计算支持不足 • 缺少队列概念 • 不支持集群资源的动态规划以及资源复用 • 对异构资源支持不足 传统服务 大数据 人工智能 云原生大数据平台 大数据、AI等批量计算场景 云原生化面临的挑战 Volcano 架构 项目概况: • 业界首个云原生批量计算平台 • 2019年6月开源,2020年进入CNCF,目前是CNCF孵化级项目 Plugins on demand reclaim Re-construct JobInfo in Cache by PodGroup Job JobSpec 用户案例:荷兰ING银行大数据平台云原生化改造 • Platform Entry-point • Project Management Data Science in a box (Advanced analytics0 码力 | 18 页 | 1.82 MB | 1 年前312-从数据库中间件到云原生——Apache ShardingSphere 架构演进-秦金卫
从【数据库中间件】到【云原生】 ——Apache ShardingSphere 架构演进 Apache Dubbo/ShardingSphere PMC 秦金卫(kimmking) 2020-12-04 20:00 云 原 生 学 院 # 1 2 目录 1.数据库框架:从数据库的性能与容量到数据库框架技术的产生 2.数据库中间件:从框架技术到分布式的数据库中间件技术 3.分布式数据库:从数据库中间件技术发展到分布式数据库 分布式数据库:从数据库中间件技术发展到分布式数据库 4.数据库网格:数据库与微服务、云原生的发展关系 5.数据库解决方案:如何基于 ShardingSphere 生态创建数据库解决方案 1.数据库框架 1.数据库框架 摩尔定律失效 分布式崛起 1.数据库框架 随着数据量的增大,读写并发的增加,系统可用性要求的提升,单机 MySQL面临: 1、容量有限,难以扩容 2、读写压力,QPS过大,特别是分析类需求会影响到业务事务 3、可用性不足,宕机问题 1.数据库框架 1.数据库框架 计算机领域的任何问题都可以通过增加一个中间层来解决。 数据库框架技术:在业务侧增强数据 库的能力。 直接在业务代码使用。 支持常见的数据库和JDBC。 轻量级,不需要额外的资源和机器。 1.数据库框架 1、改造对业务系统具有较大侵入性; 2、对于复杂的SQL,可能不支持; 3、对于跨库和跨分片的数据,需要额外机制保障一致性;0 码力 | 23 页 | 1.91 MB | 5 月前324-云原生中间件之道-高磊
硬件与虚拟化厂商提供,如果是HCI架构, 作为总体集成方,会降低安全集成成本 可信计算环境:OS安全、TPM加密、TEE可信环境 云原生安全:镜像安全、镜像仓库安全、容器加固隔离、通信零信任 (Istio零信任、Calico零信任、Cilium零信任、WorkLoad鉴权、WorkLoad 间授权等)、DevSecOps(安全左右移等等,比如代码或者镜像扫描)、 RASP应用安全、数据安全、态势感知与风险隔离 由 程序安全测试) 黑盒测试,通过模拟业务流量发起请求,进行模糊测试,比如故障注入 或者混沌测试 语言无关性,很高的精确度。 难以覆盖复杂的交互场景,测试过程对业务造成 较大的干扰,会产生大量的报错和脏数据,所以 建议在业务低峰时进行。 IAST(交互式应用程序 安全测试) 结合了上面两种的优点并克服其缺点,将SAST和DAST相结合,通过插桩 等手段在运行时进行污点跟踪,进而精准的发现问题。是DevSecOps的一 比较,快速发现问题组件,借助积累的供应链资产,可以在快速定位的 同时,推动业务快速修复。 安全左移的一种,在上线前发现依赖组件的安全 问题,快速借助供应链资产库,帮助业务修复问 题。 需要进行大量的安全特征以及资产库的建设或者 三方集成。(涉及业务能力) RASP(运行时安全应 用程序自我保护) 可以看做是IAST的兄弟,RASP通过程序上下文和敏感函数检查行为方式 来阻止攻击,属于一种主动的态势感知和风险隔离技术手段 可以自动化的对非预计风险进行识别和风险隔离0 码力 | 22 页 | 4.39 MB | 5 月前323-云原生观察性、自动化交付和 IaC 等之道-高磊
费者只想找到并集成API而已,并不想了解API背后的运维细节或者需要协调运维能力!API成了一 种可以交易的商品,可以购买增强自己APP的能力,比如在自己APP里显示天气预报数据,从外部去管理应用平台,形成了一种新PaaS组织方式。 • 逻辑API:已有API的组 合,形成一个新API • 声明API:需要生成代 码框架(任何语言), 契约驱动研发 • BaaS API:数据库接口、 中间件接口外化成API 中间件接口外化成API • API门户:消费者可以 根据领域-能力查询到 想要的API。 • 自动生成SDK方便集成。 • 发行计划:向下兼容, 对比发布 • API文档:每一个API有 一个活档,指导集成。 形成市场,能力 互补 全生命周期API管理-2-Azure API Management 配置Http Header, 比如CORS等 配置入站协议转 换等 配置后端治理策略 定义API或者导入 API 全生命周期API管理-3-Azure API Management • 把自己关在小黑 屋里面,自己就 可以自助的从API 使用角度定义、 驱动研发、发布 或者实施与自己 APP的集成。 • API作为产品,可 以给订阅、可以 被交易。 标准化能力-微服务PAAS-从监控到可观测-研发人员的第五感-1 知道 知道的 不知道 不知道的 主动性 被动性 监控 可观察 健康检查0 码力 | 24 页 | 5.96 MB | 5 月前3云原生安全威胁分析与能力建设白皮书(来源:中国联通研究院)
.......................................................................................34 2.6.2 敏感数据泄露攻击................................................................................34 2.6.3 身份认证攻击 千企业数字化转型换挡提速,企业对云计算的使用效能提出新的需求。云原生以 其独特的技术特点,很好地契合了云计算发展的本质需求,正在成为驱动云计算 质变的技术内核。 云原生作为云计算深入发展的产物,已经开始在 5G、人工智能、大数据等 各个技术领域得到广泛应用。中国联通研究院一直从事云原生及其安全技术的研 究,致力于推动云原生在通信行业落地实践,全面落实好“大安全”主责主业, 以实际行动践行“国家队、主力军、排头兵”的责任担当。2022 时代,云原生技术日趋成熟,并因大语言模型的推 动助力朝着云计算 3.0 智能时代迈进的背景下,分析云原生安全的发展情况和面 临的威胁,并研究云原生安全能力,能够为企业整体的云安全防护体系建立提供 帮助,从而保障企业业务和数据更安全的在云上运转。 1.1 云原生及云原生安全 过去十年,企业数字化转型加速推进,相继经历了服务器、云化到云原生化 三个阶段。在云化阶段,云主机是云计算的核心负载之一,云主机安全是云安全0 码力 | 72 页 | 2.44 MB | 1 年前327-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊
自动化解决用户使用体验问题,计算量属于窄带范畴, 所以计算算力重点在于云端,云端计算体系架构成熟, 成本较低,在业务上本地的设备根据模式信号反馈一些 动作,比如下雨关窗帘,是自动化范畴,上传云端的数 据都是属性数据,比如谁什么时候干了什么,后续云端 根据个人喜好数据为用户提供比如按照个人喜好调节温 度、或者提送广告内容等 自动化特征 智能家居 智能办公室 智能信号灯... 远端控制 云端分析系统 设备端 (现场)边缘计算BOX 和硬件的要求,形成 一个通用计算平台, 更普遍的为客户场景 赋能。 • 一切围绕如何将算力 输送到业务场景为中 心思想,构建技术体 系。 高级能力-业务双引擎循环驱动-业务数据化、数据业务化 互联网业务、万物互联业务等等造就了海量数据,而海量数据应该也必须能够提炼出价值为业务反向赋能,形成正向业务价值循环 云原生平台(PaaS+Caas+IaaS) 业务系统连接一组人,或者说企业业务实际能力提供者,通过双中台可 内这类 伪低代码产品,靠着模板走量批发的模式。客户买的是人工,不是技术 • 低代码平台与企业技术 栈的融合能力成为一个 重要的考验指标 • 有的企业系统已经运行 了几十年,拥有自己的 UI 体系、数据库体系和 中台体系,完全更改是 不现实的,低代码平台 要做的是与这么多技术 融合,帮助企业更好地 改进。 • 降本增效是最初级的成 果,如果能够深入企业 业务当中,低代码平台 可以带来的东西会更多。0 码力 | 20 页 | 5.17 MB | 5 月前322-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊
1、信息管理 MIS、ERP… 2、流程规范 BPM、EAI… 3、管理监控 BAM、BI 4、协作平台 OA、CRM 5、数据化运营 SEM、O2O 6、互联网平台 AI、IoT 数据化运营 大数据 智能化管控 互联网平台 跨企业合作 稳态IT:安全、稳定、性能 敏态IT:敏捷、弹性、灵活 各行业IT应用系统不断丰富与创新 总部 机关 内部员工 分支 HRM …… BPM MES 稳态IT WEB APP 移动用户 采购 平台 互联网 平台 数字 营销 敏态IT 互联网/物联网应用 创新应用 PC用户 物联网 物联终端 互联网、 大数据 AI、 IoT 数字化转型 应用价值提升 应用数量增长 应用类型丰富 应用需求多变 企业从信息化到数字化的转型带来大量的应用需求 软件组件 运行环境 部署平台 企业管理层 业务架构师或者PM 产品|数据|应用|技术架构师 架构咨询团队 企业自己决定 云原生平台+架构咨询团队 数据平台 DevOps 微服务 PAAS 容器云 客户群体与规模 电信 制造 金融 服务业 政府 互联网 350.2亿 云原生采用规模占比与市场总规模 58% 11% 10% 8% 5% 5% 数据来源:中国云原生产业联盟20190 码力 | 42 页 | 11.17 MB | 5 月前3
共 26 条
- 1
- 2
- 3