云原生图数据库解谜、容器化实践与 Serverless 应用实操云原⽣图数据库解谜、容器化实 践与 Serverless 应⽤实操 古思为 ⽅阗 Graph DB on K8s Demystified and its Serverless applicaiton in actions. DEVELOPER ADVOCATE @ MAINTAINER OF KCD China 2021 Nov. 6th @Shanghai 古思为 wey-gu ⽂档:Nebula 架构 官⽹:⽤户案例 ⼀个可靠的分布式、线性扩容、性能⾼效的图数据库 世界上唯⼀能够容纳千亿顶点和万亿条边,并提供毫秒级查询延时的图数据库解决⽅案 云原⽣时代的图数据库 容器化部署演进 Nebula Docker Nebula K8s Nebula Operator Nebula Operator 实现 Kubebuilder Scaffold CRD Control0 码力 | 47 页 | 29.72 MB | 1 年前3
使用Chaos Mesh来保障云原生系统的健壮性-周强云原生社区Meetup 第三期·杭州站 使用 Chaos Mesh 来保障云原生系统的健壮性 演讲人:周强 GitHub 地址:https://github.com/zhouqiang-cl PingCAP 工程效率负责人,ChaosMesh 负责人 云原生社区Meetup 第三期·杭州站 The incident in the production environment0 码力 | 28 页 | 986.42 KB | 6 月前3
云原生安全威胁分析与能力建设白皮书(来源:中国联通研究院)22 2.2.5 针对镜像不安全配置的攻击................................................................ 22 2.3 路径 2:容器攻击....................................................................................... 23 2.3.1 守护进程攻击........................................................................................23 2.3.2 容器提权和逃逸攻击............................................................................24 2.3.3 拒绝服务攻击 ...................................................................25 云原生安全威胁分析与能力建设白皮书 2 2.3.4 容器网络攻击........................................................................................26 2.40 码力 | 72 页 | 2.44 MB | 1 年前3
22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊OA、CRM 5、数据化运营 SEM、O2O 6、互联网平台 AI、IoT 数据化运营 大数据 智能化管控 互联网平台 跨企业合作 稳态IT:安全、稳定、性能 敏态IT:敏捷、弹性、灵活 各行业IT应用系统不断丰富与创新 总部 机关 内部员工 分支 机构 内部员工 移动 接入 内部员工/合作伙伴 OA CRM HRM …… BPM MES 稳态IT WEB APP 移动用户 采购 平台 稳定交付的要求 场景 1 如果生产中一台Web应用服务器故障,恢复这台服务器需要 做哪些事情? 场景 2 如果应用负载升高/降低,如何及时、按需扩展/收缩所 用资源? 场景 3 如果业务系统要升级,如何平滑升级?万一升级失败是 否能够自动回滚?整个过程线上业务持续运行不中断。 传统稳态业务环境难以高效承载敏态应用 发现故障 (假死) 创建 新实例 配置 运行环境 部署当前 应用版本 添加 恢复正常 场景 1 如果生产中一台Web应用服务器故障,恢复这台服务器需要 做哪些事情? 场景 2 如果应用负载升高/降低,如何及时按需扩展/收缩所用 资源? 场景 3 如果业务系统要升级,如何平滑升级?万一升级失败是 否能够自动回滚?整个过程线上业务持续运行不中断。 传统稳态业务环境难以高效承载敏态应用 发现故障 (假死) 创建 新实例 配置 运行环境 部署当前 应用版本 添加0 码力 | 42 页 | 11.17 MB | 6 月前3
24-云原生中间件之道-高磊NetWorking PaaS 硬件与虚拟化厂商提供,如果是HCI架构, 作为总体集成方,会降低安全集成成本 可信计算环境:OS安全、TPM加密、TEE可信环境 云原生安全:镜像安全、镜像仓库安全、容器加固隔离、通信零信任 (Istio零信任、Calico零信任、Cilium零信任、WorkLoad鉴权、WorkLoad 间授权等)、DevSecOps(安全左右移等等,比如代码或者镜像扫描)、 R 和降低成本 默认安全策略,可以天然的规避大部分 安全问题,使得人员配置和沟通工作大 量减少,提高了整体效率! 安全右移是为了恰到好处的安全,一些非严 重安全问题,没有必要堵塞主研发流程,可 以交于线上安全防御系统。提高了整体实施 效率! 安全编排自动化和响应作为连接各个环 节的桥梁,安全管理人员或者部分由 AIOps组件可以从全局视角观察,动态 调整策略,解决新问题并及时隔离或者 解决! DevSecOps 术手段 可以自动化的对非预计风险进行识别和风险隔离 对系统性能有一定影响 可信计算 核心目标是保证系统和应用的完整性,从而保证系统按照设计预期所规 定的安全状态。尤其是像边缘计算BOX这种安全防护,根据唯一Hash值验 证,可以实现极为简单的边云接入操作,运行态并不会影响性能。 可信根一般是一个硬件,比如CPU或者TPM,将从 它开始构建系统所有组件启动的可信启动链,比 如UEFI、loader、OS、应用等,可以确保在被入侵0 码力 | 22 页 | 4.39 MB | 6 月前3
构建统一的云原生应用 可观测性数据平台scope」的Metrics 例如:响应Request A的实例在一段时间内做了多少次GC? ① 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ② 应用、系统、网络的Metrics之间 例如:某个Service的Pod的QPS、IOPS、BPS分别是多少? 例如:Pod所在的KVM宿主机的CPU、内存指标? ② 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ④应用、系统、网络的Log之间 例如:应用日志ERROR与Ingress日志有什么关联吗? ④ 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ⑤「非Request scope」的Log与Trace之间 例如:系统日志异常与Request时延增大是否有关联 ⑤ 看云网更清晰 Simplify Simplify the growing complexity. 数据打通并不简单 ⑥ 应用、系统、网络的Trace之间 例如:访问一个服务的耗时究竟有哪些部分组成? App,Sidecar,Node,KVM,NFVGW? ⑥ 看云网更清晰 Simplify the growing complexity. 我们需要哪些Tag?OpenTelemetry的答案 服务属性 代码属性 实例属性0 码力 | 35 页 | 6.75 MB | 1 年前3
中国移动磐舟DevSecOps平台云原生安全实践• 端到端自动化交付流水线 • 开发过程自主可控 • 一键发布上磐基,实现“乘舟上云,稳如磐基” • 沉淀IT软件资产,核心代码掌控 • 提升开发交付效率 一键 上磐基 构建 打包 容器 化镜 像 自动化 部署 研发安 全扫描 需求 设计 敏捷 开发交付协同 云原生DevSecOps 安全工具链 国产化 双平面调度 敏捷开 发过程 统一代 码仓库 依赖制 品仓库 作权等研发成果,建立了领先和成熟的研发体系。 ü 可信云容器解决 方案认证 ü 2021年云安全守卫者 计划优秀案例 ü DevOps解决方案最高等 级先进级的现场认证 ü 2021年通信行业云计算领域风云团队奖 ü 创新解决方案证书 最高等级认证 优秀案例 专业认证 获奖情况 人 1,00000000000 系统 国家 稳定 发展 健康 财富 安全 创新 安全的重要性 源代码审计针对源代码缺陷进行静态分析检测。它在对目标软件代码进行语法、语义分析的技术上,辅以数据流 分析、控制流分析和特有的缺陷分析算法等高级静态分析手段,能够高效的检测出软件源代码中的可能导致严重 缺陷漏洞和系统运行异常的安全问题和程序缺陷,并准确定位告警,从而有效的帮助开发人员消除代码中的缺陷、 培养安全开发意识,提高安全开发水平、减少不必要的软件补丁升级,为软件的信息安全保驾护航。 发起工程检 测0 码力 | 22 页 | 5.47 MB | 1 年前3
36-云原生监控体系建设-秦晓辉•原来使用资产视角管理监控对象的系统不再适用 •要么使用注册中心来自动发现,要么就是采集器和被监控对象通过sidecar模式捆绑一体 指标生命周期变短 •微服务的流行,要监控的服务数量大幅增长,是之前的指标数量十倍都不止 •广大研发工程师也更加重视可观测能力的建设,更愿意埋点 •各种采集器层出不穷,都是本着可采尽采的原则,一个中间件实例动辄采集几千个指标 指标数量大幅增长 •老一代监控系统更多的是关注机器、交 •老一代监控系统更多的是关注机器、交换机、中间件的监控,每个监控对象一个标识即可,没有维度的设计 •新一代监控系统更加关注应用侧的监控,没有维度标签玩不转,每个指标动辄几个、十几个标签 指标维度更为丰富 •Kubernetes体系庞大,组件众多,涉及underlay、overlay两层网络,容器内容器外两个namespace,搞懂需要花些时间 •Kubernetes的监控,缺少体系化的文档指导,关键指标是哪些?最佳实践是什么?不是随便搜索几个yaml文件能搞定的 l 服务端组件,控制面:API Server、Scheduler、 Controller-Manager、ETCD l 工作负载节点,最核心就是监控Pod容器和节点本 身,也要关注 kubelet 和 kube-proxy l 业务程序,即部署在容器中的业务程序的监控,这 个其实是最重要的 随着 Kubernetes 越来越流行,几乎所有云厂商都提供 了托管服务,这就意味着,服务端组件的可用性保障交0 码力 | 32 页 | 3.27 MB | 6 月前3
27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-1 远端控制 云端分析系统 设备端 自动化解决用户使用体验问题,计算量属于窄带范畴, 所以计算算力重点在于云端,云端计算体系架构成熟, 成本较低,在业务上本地的设备根据模式信号反馈一些 动作,比如下雨关窗帘,是自动化范畴,上传云端的数 据都是属性数据,比如谁什么时候干了什么,后续云端 根据个人喜好数据为用户提供比如按照个人喜好调节温 根据个人喜好数据为用户提供比如按照个人喜好调节温 度、或者提送广告内容等 自动化特征 智能家居 智能办公室 智能信号灯... 远端控制 云端分析系统 设备端 (现场)边缘计算BOX 业务场景复杂,对算力、通信要求很高,计算放置于 云端时效性差,另外无法现场就对业务进行处理,比 如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 高级能力-业务双引擎循环驱动-业务数据化、数据业务化 互联网业务、万物互联业务等等造就了海量数据,而海量数据应该也必须能够提炼出价值为业务反向赋能,形成正向业务价值循环 云原生平台(PaaS+Caas+IaaS) 业务系统连接一组人,或者说企业业务实际能力提供者,通过双中台可 以将最上层业务产品诉求直接下沉到能力端,比如我们需要快速搭建一 个电商下单APP,只需要利用中台提供的能力要素,并在APP端组织业务 流程或者0 码力 | 20 页 | 5.17 MB | 6 月前3
23-云原生观察性、自动化交付和 IaC 等之道-高磊从稳定性目标出发,首先需要有提示应用出问题的手段 • 当提示出现问题后,就需要有定位问题位置的手段,进 一步要有能够指出问题根因、甚至提前就预警的手段。 拓扑流量图:是不是按预期运行 分布式跟踪:哪些调用 故障或者拖慢了系统 监控与告警: 主动告诉我 问题发生了! 微服务部署后就像个黑盒子,如何发现问题并在 远端运维是主要的课题,那么就需要从宏观告知 研发人员,并且提供日志、跟踪、问题根因分析 等工具进一步从微观帮助研发人员定位和解决问 硬件环境 遗留系统 安装配置点 安装配置点 安装配置点 集成点 集成点 集成点 1. 交付人员学习手册文档,需要在客户 环境做“安装配置”和“与遗留系统集成” 两方面工作。 2. 安装配置:在硬件上安装软件,不乏 针对硬件特性的适配、还需要安装OS 等,最后还要在OS上安装应用,并且 还要保证应用软件依赖拓扑结构不会 出错。 3. 集成点:包括新环境的硬件、软件和 应用与遗留系统的集成,比如,监控、 应用与遗留系统的集成,比如,监控、 服务注册中心、文件传输、消息集成、 ITSM等系统的部署集成。 4. 由于上层所依赖的底层环境在不同交 付环境中是不同的,而传统交付方式 缺乏脚本能“理解”的方式来表达这些 差异,此外由于事后更新OS、三方库 或者系统,这些变更又缺乏校验关系, 升级时很难给予企业信心,这种交付 方式很难被自动化。 标准化能力-微服务PAAS-OAM-万花筒PAAS-1-引子 客户环境交付 制品0 码力 | 24 页 | 5.96 MB | 6 月前3
共 29 条
- 1
- 2
- 3













