积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(7)机器学习(7)

语言

全部英语(4)中文(简体)(3)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.052 秒,为您找到相关结果约 7 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    持最新。如果读者遇到任何此类 问题,请查看安装 (page 9) 以更新代码和运行时环境。 下面是我们如何从PyTorch导入模块。 #@save import numpy as np import torch (continues on next page) 目录 5 (continued from previous page) import torchvision from 25 办比赛14来完成这项工作。 搜索 有时,我们不仅仅希望输出一个类别或一个实值。在信息检索领域,我们希望对一组项目进行排序。以网络 搜索为例,目标不是简单的“查询(query)‐网页(page)”分类,而是在海量搜索结果中找到用户最需要的 那部分。搜索结果的排序也十分重要,学习算法需要输出有序的元素子集。换句话说,如果要求我们输出字 母表中的前5个字母,返回“A、B、C、D、E”和 3, 4)) tensor([[[1., 1., 1., 1.], [1., 1., 1., 1.], (continues on next page) 2.1. 数据操作 41 (continued from previous page) [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    support NVIDIA A100 using CUDA 11 and cuDNN 8 ‣ Various bug fixes for channels-last layout optimization. Note that this layout is still in experimental form. See Known Issues below. ‣ Performance improvements Jupyter Notebook 6.0.3 ‣ Ubuntu 18.04 with January 2020 updates ‣ Initial support for channel-last layout for convolutions ‣ Support for loop unrolling and vectorized loads and stores in TensorIterator
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    (zero-d weights are dark) each with 33% sparsity at various granularity levels. It shows the parameter layout for a convolutional layer which receives a 3-channel input. Each individual 3x3 matrix is a kernel
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    metadata["score"] = int(scores[0][j]) docs.append(doc) continue id_set.add(i) docs_len = len(doc.page_content) for k in range(1, max(i, store_len - i)): break_flag = False for l in [i + k, i - k]: if search(_id0) if docs_len + len(doc0.page_content) > self.chunk_size: break_flag = True break elif doc0.metadata["source"] == doc.metadata["source"]: docs_len += len(doc0.page_content) id_set.add(l) if break_flag: search(_id) else: _id0 = self.index_to_docstore_id[id] doc0 = self.docstore.search(_id0) doc.page_content += " " + doc0.page_content if not isinstance(doc, Document): raise ValueError(f"Could not find document
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Appendix for SVM

    Appendix for SVM 1 Lagrange dual function (pp. 16) As shown in page 15, calculating the derivatives of the Lagrangian with respect to ω and b respectively gives ω = m � i=1 αiy(i)x(i) (1) and m � αiαjy(i)y(j)(x(i))T x(j) = m � i=1 αi − 1 2 m � i=1,j=1 αiαjy(i)y(j) < x(i), x(j) > (3) 2 Corollaries on Page 34 If αi = 0, y(i)(ωT x(i) + b) ≥ 1 ∵ αi = 0, αi + ri = C ∴ ri = C ∵ riξi = 0 ∴ ξi = 0 ∵ y(i)(ωT = −1 2(K11 − 2K12 + K22)α2 2 +y(2)(y(2) − y(1) + ζK11 − ζK12 + V1 − V2)α2 + const2 As shown in page 39, let the derivative of f(α2) be zero ∂ ∂α2 f(α2) = −(K11 − 2K12 + K22)α2 +y(2)(y(2) − y(1) +
    0 码力 | 5 页 | 117.35 KB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务

    MNIST 数据集介绍 Original MNIST dataset The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of
    0 码力 | 52 页 | 7.99 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    preserves the candidate’s profile. Below is an example of a paragraph picked from the Telegram Style page on wikipedia. The first paragraph is the original version. The shuffled version follows it. Barring
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
动手深度学习v2PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesAI模型千问qwen中文文档AppendixforSVMTensorFlow快速入门实战上手训练部署服务
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩