动手学深度学习 v2.0持最新。如果读者遇到任何此类 问题,请查看安装 (page 9) 以更新代码和运行时环境。 下面是我们如何从PyTorch导入模块。 #@save import numpy as np import torch (continues on next page) 目录 5 (continued from previous page) import torchvision from 25 办比赛14来完成这项工作。 搜索 有时,我们不仅仅希望输出一个类别或一个实值。在信息检索领域,我们希望对一组项目进行排序。以网络 搜索为例,目标不是简单的“查询(query)‐网页(page)”分类,而是在海量搜索结果中找到用户最需要的 那部分。搜索结果的排序也十分重要,学习算法需要输出有序的元素子集。换句话说,如果要求我们输出字 母表中的前5个字母,返回“A、B、C、D、E”和 3, 4)) tensor([[[1., 1., 1., 1.], [1., 1., 1., 1.], (continues on next page) 2.1. 数据操作 41 (continued from previous page) [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 10 码力 | 797 页 | 29.45 MB | 1 年前3
PyTorch Release Notessupport NVIDIA A100 using CUDA 11 and cuDNN 8 ‣ Various bug fixes for channels-last layout optimization. Note that this layout is still in experimental form. See Known Issues below. ‣ Performance improvements Jupyter Notebook 6.0.3 ‣ Ubuntu 18.04 with January 2020 updates ‣ Initial support for channel-last layout for convolutions ‣ Support for loop unrolling and vectorized loads and stores in TensorIterator0 码力 | 365 页 | 2.94 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques(zero-d weights are dark) each with 33% sparsity at various granularity levels. It shows the parameter layout for a convolutional layer which receives a 3-channel input. Each individual 3x3 matrix is a kernel0 码力 | 34 页 | 3.18 MB | 1 年前3
AI大模型千问 qwen 中文文档metadata["score"] = int(scores[0][j]) docs.append(doc) continue id_set.add(i) docs_len = len(doc.page_content) for k in range(1, max(i, store_len - i)): break_flag = False for l in [i + k, i - k]: if search(_id0) if docs_len + len(doc0.page_content) > self.chunk_size: break_flag = True break elif doc0.metadata["source"] == doc.metadata["source"]: docs_len += len(doc0.page_content) id_set.add(l) if break_flag: search(_id) else: _id0 = self.index_to_docstore_id[id] doc0 = self.docstore.search(_id0) doc.page_content += " " + doc0.page_content if not isinstance(doc, Document): raise ValueError(f"Could not find document0 码力 | 56 页 | 835.78 KB | 1 年前3
Appendix for SVMAppendix for SVM 1 Lagrange dual function (pp. 16) As shown in page 15, calculating the derivatives of the Lagrangian with respect to ω and b respectively gives ω = m � i=1 αiy(i)x(i) (1) and m � αiαjy(i)y(j)(x(i))T x(j) = m � i=1 αi − 1 2 m � i=1,j=1 αiαjy(i)y(j) < x(i), x(j) > (3) 2 Corollaries on Page 34 If αi = 0, y(i)(ωT x(i) + b) ≥ 1 ∵ αi = 0, αi + ri = C ∴ ri = C ∵ riξi = 0 ∴ ξi = 0 ∵ y(i)(ωT = −1 2(K11 − 2K12 + K22)α2 2 +y(2)(y(2) − y(1) + ζK11 − ζK12 + V1 − V2)α2 + const2 As shown in page 39, let the derivative of f(α2) be zero ∂ ∂α2 f(α2) = −(K11 − 2K12 + K22)α2 +y(2)(y(2) − y(1) +0 码力 | 5 页 | 117.35 KB | 1 年前3
《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务MNIST 数据集介绍 Original MNIST dataset The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of0 码力 | 52 页 | 7.99 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquespreserves the candidate’s profile. Below is an example of a paragraph picked from the Telegram Style page on wikipedia. The first paragraph is the original version. The shuffled version follows it. Barring0 码力 | 56 页 | 18.93 MB | 1 年前3
共 7 条
- 1













