PyTorch Release Notesneural network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support. Functions are executed immediately instead of enqueued in a static graph, improving easeNote: If you use multiprocessing for multi-threaded data loaders, the default shared memory segment size with which the container runs might not be enough. Therefore, you should increase the shared script is available on GitHub. ‣ TransformerXL model: This transformer-based language model has a segment-level recurrence and a novel relative positional encoding. The enhancements that were introduced 0 码力 | 365 页 | 2.94 MB | 1 年前3
 复杂环境下的视觉同时定位与地图构建Non-consecutive Track Matching Segment-based BA Bag-of-words Place Recognition Pose Graph Optimization + Traditional BA Street序列结果比较 ENFT-SLAM ORB-SLAM Non-consecutive Track Matching Segment-based BA Bag-of-words0 码力 | 60 页 | 4.61 MB | 1 年前3
 动手学深度学习 v2.0) 组成的生物神经元图片。轴突(axon,输出线)和轴突端子(axon terminal,输出端子)通过突触(synapse) 与其他神经元连接。 Dendrite Cell body Node of Ranvier Axon Terminal Schwann cell Myelin sheath Axon Nucleus 图3.1.3: 真实的神经元。 3.1. 线性回归 x**2 # 凸函数 g = lambda x: torch.cos(np.pi * x) # 非凸函数 h = lambda x: torch.exp(0.5 * x) # 凸函数 x, segment = torch.arange(-2, 2, 0.01), torch.tensor([-1.5, 1]) (continues on next page) 434 11. 优化算法 (continued subplots(1, 3, figsize=(9, 3)) for ax, func in zip(axes, [f, g, h]): d2l.plot([x, segment], [func(x), func(segment)], axes=ax) 不出所料,余弦函数为非凸的,而抛物线函数和指数函数为凸的。请注意,为使该条件有意义,X是凸集的 要求是必要的。否则可能无法很好地界定f(λx0 码力 | 797 页 | 29.45 MB | 1 年前3
 Lecture Notes on Gaussian Discriminant Analysis, NaiveExpectation-Maximization (EM) algorithm. 6.1 Convex Sets and Convex Functions A set C is convex if the line segment between any two points in C lies in C, i.e., for ∀x1, x2 ∈ C and ∀θ with 0 ≤ θ ≤ 1, we have θx10 码力 | 19 页 | 238.80 KB | 1 年前3
 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes(SDU) GDA, NB and EM September 27, 2023 82 / 122 Convex Functions A set C is convex if the line segment between any two points in C lies in C, i.e., for ∀x1, x2 ∈ C and ∀θ with 0 ≤ θ ≤ 1, we have θx10 码力 | 122 页 | 1.35 MB | 1 年前3
 微博在线机器学习和深度学习实践-黄波预测服务 实时特征 实时数据 3 在线机器学习 实时样本 实时模型训练 实时更新参数 Task 训练预处理 Node 实时样本拼接 Node 在线模型训练 Node 离线样本拼接 Node 在线模型评估 Node 模型上线 Node 实时特征处理 Node 离线特征处理 Task Kafka输入 input process process output WeiFlow0 码力 | 36 页 | 16.69 MB | 1 年前3
 keras tutorialreload_layer = Dense.from_config(config) input_shape Get the input shape, if only the layer has single node. >>> from keras.models import Sequential >>> from keras.layers import Activation, Dense >>> get_weights() >>> layer_1.input_shape (None, 8) input Get the input data, if only the layer has single node. >>> from keras.models import Sequential >>> from keras.layers import Activation, Dense >>> multiple node  get_input_shape_at: Get the input shape at the specified index, if the layer has multiple node  output_shape: Get the output shape, if only the layer has single node. >>> from0 码力 | 98 页 | 1.57 MB | 1 年前3
 AI大模型千问 qwen 中文文档Shell 脚本中提供了一些 指南,并且此处将以 finetune.sh 这个脚本为例进行解释说明。 要为分布式训练(或单 GPU 训练)设置环境变量,请指定以下变量:GPUS_PER_NODE 、NNODES、NODE_RANK 、MASTER_ADDR 和 MASTER_PORT 。不必过于担心这些变量,因为我们为您提供了默认设置。在命令行中, 您可以通过传入参数 -m 和 -d 来分别指定模型路径和数据路径。您还可以通过传入参数 "assistant_tag": "assistant" } } 训练 执行下列命令: DISTRIBUTED_ARGS=" --nproc_per_node $NPROC_PER_NODE \ --nnodes $NNODES \ --node_rank $NODE_RANK \ --master_addr $MASTER_ADDR \ --master_port $MASTER_PORT " torchrun 32K context window size. import torch from llama_index.core import Settings from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.huggingface import HuggingFaceLLM from llama_index0 码力 | 56 页 | 835.78 KB | 1 年前3
 机器学习课程-温州大学-07机器学习-决策树值选择输出分支,直到叶子节点,将叶子 节点的存放的类别作为决策结果。 根节点 (root node) 叶节点 (leaf node) 5 1.决策树原理 根节点 (root node) 非叶子节点 (non-leaf node) (代表测试条件,对数据属性的测试) 分支 (branches) (代表测试结果) 叶节点 (leaf node) (代表分类后所获得的分类标记) ⚫ 决策树算法是一种归纳分类算法0 码力 | 39 页 | 1.84 MB | 1 年前3
 Lecture 7: K-Means(Contd.) We can recursively call the algorithm on G and/or H, or any other node in the tree. E.g., choose to split the node whose average dissimilarity is highest, or whose maximum dissimilarity is highest0 码力 | 46 页 | 9.78 MB | 1 年前3
共 12 条
- 1
 - 2
 













