积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(77)机器学习(77)

语言

全部中文(简体)(48)英语(29)

格式

全部PDF文档 PDF(77)
 
本次搜索耗时 0.064 秒,为您找到相关结果约 77 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    models and multimodal models are pretrained on large-scale multilingual and multimodal data and post-trained on quality data for aligning to human preferences. Qwen is capable of natural language understanding transformers>=4. 37.0 版本。以下是一个非常简单的代码片段示例,展示如何运行 Qwen1.5-Chat 模型,其中包含 Qwen1. 5-7B-Chat 的实例: from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto # Now you modelscope import AutoModelForCausalLM, AutoTokenizer 借助 TextStreamer ,chat 的流式模式变得非常简单。下面我们将展示一个如何使用它的示例: ... # Reuse the code before `model.generate()` in the last code snippet from transformers import TextStreamer
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Overview of Compression One of the simplest approaches towards efficiency is compression to reduce data size. For the longest time in the history of computing, scientists have worked tirelessly towards popular example of lossless data compression algorithm is Huffman Coding, where we assign unique strings of bits (codes) to the symbols based on their frequency in the data. More frequent symbols are assigned and the path to that symbol is the bit-string assigned to it. This allows us to encode the given data in as few bits as possible, since the most frequent symbols will take the least number of bits to
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 rwcpu8 Instruction Install miniconda pytorch

    install Miniconda and PyTorch yourself, you can use the global Miniconda and PyTorch installed at /export/data/miniconda3 . 1. Initialize Miniconda: 2. If you want to use PyTorch, activate the pytorch conda is ~/.cshrc_user , so you should write the content in ~/.tcshrc to ~/.cshrc_user : source "/export/data/miniconda3/etc/profile.d/conda.csh" conda activate pytorch conda activate tf2 python python_script conda install pytorch torchvision cudatoolkit=10.2 -c pytorch python -c 'import torch; print(torch.__version__)' python -c 'import torch; print(torch.cuda.is_available())' Useful Links Miniconda Documentation
    0 码力 | 3 页 | 75.54 KB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    com/lepture/captcha from captcha.image import ImageCaptcha from captcha.audio import AudioCaptcha image = ImageCaptcha(fonts=['/path/A.ttf', '/path/B.ttf’]) data = image.generate('1234’) image.write('1234' write('1234', 'out.png’) audio = AudioCaptcha(voicedir='/path/to/voices’) data = audio.generate('1234’) audio.write('1234', 'out.wav’) pydot pydot 是用纯 Python 实现的 GraphViz 接口,支持使用 GraphViz 解析和存储 DOT语言 数据-模型-服务流水线 数据集 生成 数据 处理 模型 训练 参数 调优 模型 部署 识别 服务 使用 Flask 快速搭建 验证码识别服务 使用 Flask 启动 验证码识别服务 $ export FLASK_ENV=development && flask run --host=0.0.0.0 打开浏览器访问测试 URL(http://localhost:5000/ping) 访问
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    #@save import collections import hashlib import math import os import random import re import shutil import sys import tarfile import time import zipfile from collections import defaultdict defaultdict import pandas as pd import requests from IPython import display from matplotlib import pyplot as plt from matplotlib_inline import backend_inline d2l = sys.modules[__name__] 本书中的大部分代码都是基于PyT #@save import numpy as np import torch (continues on next page) 目录 5 (continued from previous page) import torchvision from PIL import Image from torch import nn from torch.nn import functional
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    functionality. PyTorch also includes standard defined neural network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support. Functions are executed immediately instead nvcr.io/nvidia/ pytorch:-py3 Note: If you use multiprocessing for multi-threaded data loaders, the default shared memory segment size with which the container runs might not be enough To pull data and model descriptions from locations outside the container for use by PyTorch or save results to locations outside the container, mount one or more host directories as Docker® data volumes
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 keras tutorial

    of algorithms, inspired from the model of human brain. Deep learning is becoming more popular in data science fields like robotics, artificial intelligence(AI), audio & video recognition and image recognition -U scikit-learn Seaborn Seaborn is an amazing library that allows you to easily visualize your data. Use the below command to install: pip install seaborn You could see the message similar as specified conda terminal using the below command: spyder To ensure everything was installed correctly, import all the modules, it will add everything and if anything went wrong, you will get module not found
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    它允许构建任意的神经网络图。 Sequential 顺序模型如下所示: from keras.models import Sequential model = Sequential() 可以简单地使用 .add() 来堆叠模型: KERAS: 基于 PYTHON 的深度学习库 2 from keras.layers import Dense model.add(Dense(units=64, activation='relu' 顺序模型是多个网络层的线性堆叠。 你可以通过将层的列表传递给 Sequential 的构造函数,来创建一个 Sequential 模型: from keras.models import Sequential from keras.layers import Dense, Activation model = Sequential([ Dense(32, input_shape=(784,)), Activation('relu') metrics=['accuracy']) # 均方误差回归问题 model.compile(optimizer='rmsprop', loss='mse') # 自定义评估标准函数 import keras.backend as K def mean_pred(y_true, y_pred): return K.mean(y_pred) model.compile(optimizer='rmsprop'
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    In the first chapter, we briefly introduced learning techniques such as regularization, dropout, data augmentation, and distillation to improve quality. These techniques can boost metrics like accuracy precision, recall, etc. which often are our primary quality concerns. We have chosen two of them, namely data augmentation and distillation, to discuss in this chapter. This is because, firstly, regularization and dropout are fairly straight-forward to enable in any modern deep learning framework. Secondly, data augmentation and distillation can bring significant efficiency gains during the training phase, which
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    there might not be a single algorithm that works perfectly, and there is a large amount of unseen data that the algorithm needs to process. Unlike traditional algorithm problems where we expect exact optimal certainty the exact content that you would end up clicking on, at that particular moment, with more data and sophisticated algorithms, these models can be trained to be fairly accurate over a longer term Availability of labelled data Even if one has enough compute, and sophisticated algorithms, solving classical machine learning problems relies on the presence of sufficient labeled data. With deep learning
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
共 77 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 8
前往
页
相关搜索词
AI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterCompressionTechniquesrwcpu8InstructionInstallminicondapytorchTensorFlow快速入门实战验证验证码识别动手深度学习v2PyTorchReleaseNoteskerastutorialKeras基于PythonIntroduction
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩