阿里云上深度学习建模实践-程孟力"32", "48", "64", "80"] } ] MIND: [ { "type": "Categorical", "name": ”capsule_config.routing_logits_scale", “candidates”:[10, 20, 30] }, { "type": "Categorical", "name": "capsule_config0 码力 | 40 页 | 8.51 MB | 1 年前3
PyTorch Release NotesFunctionality can be easily extended with common Python libraries such as NumPy, SciPy, and Cython. Automatic differentiation is done with a tape-based system at both a functional and neural network layer level includes a collection of highly optimized modules for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your PyTorch code. ‣ A preview of Torch-TensorRT commit 9130ab38 from July 31, 2019 as well as a cherry- picked TensorRT 5.1.5 Automatic Mixed Precision (AMP) Automatic Mixed Precision (AMP) for PyTorch is available in this container through the native0 码力 | 365 页 | 2.94 MB | 1 年前3
亚马逊AWSAI Services Overview员工工作效率和协同 (分钟级别到秒级) Origin Destination Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Origin Destination Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking Location Seattle Origin Destination Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking0 码力 | 56 页 | 4.97 MB | 1 年前3
PyTorch Tutorialcpu.FloatTensor • GPU - torch.cuda.FloatTensor *Assume 't' is a tensor Autograd • Autograd • Automatic Differentiation Package • Don’t need to worry about partial differentiation, chain rule etc.. •0 码力 | 38 页 | 4.09 MB | 1 年前3
Machine Learning Pytorch Tutorialframework in Python. ● Two main features: ○ N-dimensional Tensor computation (like NumPy) on GPUs ○ Automatic differentiation for training deep neural networks Training Neural Networks Training Define Neural0 码力 | 48 页 | 584.86 KB | 1 年前3
AI大模型千问 qwen 中文文档Text Generation Web UI Text Generation Web UI(简称 TGW,通常被称为“oobabooga”)是一款流行的文本生成 Web 界面工具,类似 于 AUTOMATIC1111/stable-diffusion-webui 。它拥有多个交互界面,并支持多种模型后端,包括 Transformers 、 llama.cpp(通过 llama-cpp-python0 码力 | 56 页 | 835.78 KB | 1 年前3
动手学深度学习 v2.04节中所说,求导是几乎所有深度学习优化算法的关键步骤。虽然求导的计算很简单,只需要一些基 本的微积分。但对于复杂的模型,手工进行更新是一件很痛苦的事情(而且经常容易出错)。 深度学习框架通过自动计算导数,即自动微分(automatic differentiation)来加快求导。实际中,根据设计 好的模型,系统会构建一个计算图(computational graph),来跟踪计算是哪些数据通过哪些操作组合起来 产生输出 [Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., & Zhu, W.‐J. (2002). Bleu: a method for automatic evaluation of machine translation. Proceedings of the 40th annual meeting of the Association for0 码力 | 797 页 | 29.45 MB | 1 年前3
共 7 条
- 1













