积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(33)机器学习(33)

语言

全部中文(简体)(32)英语(1)

格式

全部PDF文档 PDF(33)
 
本次搜索耗时 0.060 秒,为您找到相关结果约 33 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 亚马逊AWSAI Services Overview

    2017 Amazon 的人工智能&深度学习 围绕数据的“飞轮” 机器学习 深度学习 人工智能 更多的用户 更好的产品 更多的数据 更好的分析 对象存储 数据库 数据仓库 数据流分析 商业智能 Map/Reduce 内存数据库 数据检索 点击流 用户活动 内容生成 购买 点击 喜好 传感器数据 机器学习& 人工智能 大数据 更多的用户 更好的产品 更多的数据 更好的分析 围绕数据的“飞轮” MXNet 概述 MXNet • 节省以及资源效率 • 工程中廉价的GPUs、较小的内存以及网络的限制 • 速度 • 线性的扩展能力 • 简单 • 混合了声明式(declarative)和命令式()代码的特点 为什么选择 MXNet ? MXNet: 可扩展的深度学习框架 MXNet 框架的特点 命令式 NDArray API 声明式 Symbolic Executor MXNet: 要避开的面孔 • 获得人口学以及情感的数 据推荐最佳照片 • 提高在线约会匹配的推荐 • 动态的个性化广告 人脸比对 测量两张图片中同一个人的可能性 • 为应用和设备添加人脸 验证 • 扩展了物理安全控制的 应用领域 • 客人对VIP 设施的使用 • 在线考试以及民意调查 时的用户验证 人脸识别 通过针对存储的面部向量的集合找到输入面部图像的最接近 的匹配来识别图像中的人 •
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤

    效果理论:使用 OpenCV 可视化识别结果 • 展现 AI 效果实战:使用 OpenCV 可视化识别结果 • 搭建 AI SaaS 理论:Web 框架选型 • 搭建 AI SaaS 理论:数据库 ORM 选型 • 搭建 AI SaaS 理论:10 分钟快速开发 AI SaaS • 搭建 AI SaaS 实战:10 分钟快速开发 AI SaaS • 交付 AI SaaS:10 分钟快速掌握容器部署 框架选型 Python Web 框架 Python Web 框架 - Flask Python Web 框架 - Flask Flask 常用扩展 Flask 项目常见目录结构 启动文件 manage.py 示例 搭建 AI SaaS 理论:数据库 ORM 选型 ORM 是什么 ORM 是什么 常见的 Python ORM • SQLAlchemy • Flask-SQLAlchemy 分钟快速开发 AI SaaS 安装依赖 requirements.txt 安装依赖 requirements.txt 测试 flask 是否能启动 $ python manage.py 扩展启动脚本 manage.py 实现 AI 流水线 ai_pipeline.py 实现 AI 流水线 ai_pipeline.py 实现 AI 流水线 ai_pipeline.py 搭建 AI
    0 码力 | 54 页 | 6.30 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    0年提出的关联分析算法,它采 取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-Tree), 但仍保留项集关联信息。 该算法是对Apriori方法的改进。生成一个频繁模式而不需要生成候选模式。 FP-growth算法以树的形式表示数据库,称为频繁模式树或FP-tree。 此树结构将保持项集之间的关联。数据库使用一个频繁项进行分段。这个片段被称 为“模式片段”。分析了这些 FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在 的频繁项集时都需要扫描一次数据集,所以说Apriori算法是高效的。其中 算法发现频繁项集的过程是: (1)构建FP树; (2)从FP树中挖掘频繁项集。 28 3.FP-Growth算法 FP-growth算法思想 该算法和Apriori算法最大的不同有两点: 第一,不产生候选集 第二,只需要两次遍历数据库,大大提高了效率。 第二,只需要两次遍历数据库,大大提高了效率。 29 3.FP-Growth算法 FP-Tree ( Frequent Pattern Tree ) FP树(FP-Tree)是由数据库的初始项集组成的树状结构。 FP树的目的是挖掘最 频繁的模式。FP树的每个节点表示项集的一个项。 根节点表示null,而较低的节点表示项集。在形成树的同时,保持节点与较 低节点(即项集与其他项集)的关联。 30 3.FP-Growth算法
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    trix Multiplication,简称 matmul)。由于 ?@?的运算结果是形状为[?, ?out]的矩阵,与向量?并不能直接相加,因此批量形式的+号 需要支持自动扩展功能(Broadcasting),将向量?扩展为形状为[?, ?out]的矩阵后,再与?@? 相加。 考虑两个样本,输入特征长度?in = 3,输出特征长度?out = 2的模型,式(3.1)展开 为: [?1 3],可以直接与?@?进行相加运算,从而获得线性层的输出张量, 这才是严格意义上的运算过程。实际上,上述插入维度和复制数据的步骤并不需要开发者 手动执行,PyTorch 会自动完成,这是下一节要介绍的自动扩展功能。 考虑另一个例子,输入张量为 2 行 2 列的矩阵,创建张量如下: In [82]: x = torch.arange(4) x = torch.reshape(x,[2,2]) 复制操作呢?这 就是接下来要介绍的 Broadcasting 操作。 4.8 Broadcasting 机制 Broadcasting 称为广播机制(或自动扩展机制),它是一种轻量级的张量复制手段,在逻 辑上扩展张量数据的形状,但是只会在需要时才会执行实际存储复制操作。对于大部分场 景,Broadcasting 机制都能通过优化手段避免实际复制数据而完成逻辑运算,从而相对于上 一节的
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    积极 推动研究成果在业务中落地产生价值。 关于优图实验室 人脸识别 图像识别 音频识别 SACC2017 目录 01 腾讯优图内容审核能力介绍 02 深度学习技术介绍 03 内容审核的扩展和延伸 00 图像审核的行业背景 SACC2017 内容审核 - 行业现状 不良信息泛滥,监管猝不及防 Ø 随着互联网的飞速发展和信息量的猛增, 大量的色情图片、暴力等不良信息夹杂其 中,严重影响着互联网的健康发展。 人群聚集 火灾 血腥 极端主义、恐怖主义标识 SACC2017 内容识别 – 人脸识别 l 政治敏感人物识别, 直播, 视频等场景 Ø 上亿级别的人脸检索,秒级的检索速度从黑名 单,白名单数据库中返回目标人脸信息。 Ø 技术指标:优图人脸识别通过传统方法和深度 学习技术结合,以空间面孔墙和微众银行远程 核身为基础,在性能上达到LFW 99.80%。 Ø QQ,微云等: 非法设置领导人头像, com/tencent/ncnn • 针对移动端优化版本 • 开源建设, 2.6k+ stars SACC2017 从静到动:结合视频识别能力 从图像到声音: 音频识别 03 图像内容审核的扩展和延伸 优图-腾讯云 天御内容识别解决方案 Deep Eye SACC2017 腾讯优图-腾讯云天御 内容审核解决方案 SACC2017 针对直播 – 视频鉴黄解决方案 • 在部署了DeepEye视频直播鉴黄解决方案后,系
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    ⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能, 如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版 已足够。 如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。 注意:安装路径尽量不使用带有 ⚫Pandas ⚫SciPy ⚫Matplotlib ⚫Scikit-learn Python模块 59 Python模块-NumPy ⚫NumPy NumPy是一个用Python实现的科学计算的扩展程序库,包括: 1、一个强大的N维数组对象Array; 2、比较成熟的(广播)函数库; 3、用于整合C/C++和Fortran代码的工具包; 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy read_clipboard() | 从剪切板读取 将DataFrame写入⽂件 df.to_csv() | 写入CSV文件 df.to_excel() | 写入Excel文件 df.to_sql() | 写入SQL表或数据库 df.to_json() | 写入JSON格式的文件 df.to_clipboard() | 写入剪切板 68 Python模块-SciPy ⚫SciPy SciPy是构建在NumPy的基础之上的,它
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    ⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能, 如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版 已足够。 如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。 注意:安装路径尽量不使用带有 ⚫Pandas ⚫SciPy ⚫Matplotlib ⚫Scikit-learn Python模块 60 Python模块-NumPy ⚫NumPy NumPy是一个用Python实现的科学计算的扩展程序库,包括: 1、一个强大的N维数组对象Array; 2、比较成熟的(广播)函数库; 3、用于整合C/C++和Fortran代码的工具包; 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy read_clipboard() | 从剪切板读取 将DataFrame写入⽂件 df.to_csv() | 写入CSV文件 df.to_excel() | 写入Excel文件 df.to_sql() | 写入SQL表或数据库 df.to_json() | 写入JSON格式的文件 df.to_clipboard() | 写入剪切板 69 Python模块-SciPy ⚫SciPy SciPy是构建在NumPy的基础之上的,它
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    良好的工具的支持。关键思想应该被清楚地提炼出来,尽可能减少需要让新的从业者跟上时代的入门时间。 成熟的库应该自动化常见的任务,示例代码应该使从业者可以轻松地修改、应用和扩展常见的应用程序,以 满足他们的需求。以动态网页应用为例。尽管许多公司,如亚马逊,在20世纪90年代开发了成功的数据库驱 动网页应用程序。但在过去的10年里,这项技术在帮助创造性企业家方面的潜力已经得到了更大程度的发挥, 部分原因是开发了功能强大、文档完整的框架。 用程序)与应用程序进行交互;紧接着,应用程序与数据库引擎进行交互,以保存交易历史记录并跟踪每个 用户的动态;其中,这个应用程序的核心——“业务逻辑”,详细说明了应用程序在各种情况下进行的操作。 为了完善业务逻辑,开发人员必须细致地考虑应用程序所有可能遇到的边界情况,并为这些边界情况设计合 适的规则。当买家单击将商品添加到购物车时,应用程序会向购物车数据库表中添加一个条目,将该用户ID与 商品I 特定的、面向目标的方式设计、训练和部署的。虽然他们的行为可能会给人一种通用智能的错觉,但设计的 基础是规则、启发式和统计模型的结合。其次,目前还不存在能够自我改进、自我推理、能够在试图解决一 般任务的同时,修改、扩展和改进自己的架构的“人工通用智能”工具。 一个更紧迫的问题是人工智能在日常生活中的应用。卡车司机和店员完成的许多琐碎的工作很可能也将是自 动化的。农业机器人可能会降低有机农业的成本,它们也将使收割作业自动化。工业革命的这一阶段可能对
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-10深度学习-人脸识别与风格迁移

    verification) 人脸识别(face recognition) • 有一个K个人的人脸数据库 • 获取输入图像 • 如果图像是K个人中的某人(或不认识) • 输入图片,以及某人的ID或者是名字 • 验证输入图片是否是这个人 人脸聚类(Face Clustering) 在数据库中对人脸进行聚类, 直接K-Means即可。 5 1.人脸识别概述 人脸检测的步骤 • 人脸定位 在一次学习问题中,只能通过一个样本进行学习,以能够认 出同一个人。大多数人脸识别系统都需要解决这个问题。 系统需要做的就是,仅仅通过一张已有的照片,来识别前面 这个人确实是她。相反,如果机器看到一个不在数据库里的 人所示),机器应该能分辨出她不是数据库中四个人之一。 ?(???1, ???2) = ?????? ?? ?????????? ??????? ?????? 只要你能学习这个函数?,通过输入一对图片,它将会告诉
    0 码力 | 34 页 | 2.49 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    我们有一个窗口(比如说三个单词) ,我们会对所有文本进行滑动。 3.滑动窗口为我们的模型生成训练样本 16 3.Word2Vec (下图左边为CBOW,右边为Skip-Gram) CBOW对小型数据库比较合适,而Skip-Gram在大型语料中表现更好。 17 3.Word2Vec 我们实际构建和训练模型的数据集将如下所示: 这被称为连续词袋结构,并在word2vec论文 one of the ,和抽取式文本摘要(EATS),即直接抽取 原始素材并拼接成简单概要 摘要/标 题生成 内容续写 (例如文 章续写) 整段文本 生成 产品 特色 通过随机Mask(即遮挡)数据库文本中的 词语或语段,让神经网络自主学习复原被 遮挡部分,从而拥有“猜测”缺失内容的 能力,产出预训练模型。再通过大规模预 训练模型理解上文或给定条件,从概率层 面推测最符合要求的输出结果。其本质是
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
共 33 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
亚马亚马逊AWSAIServicesOverviewTensorFlow快速入门实战业务落地实现货架洞察Web机器学习课程温州大学12关联规则PyTorch深度学习国富深度图像审核应用01引言动手v210人脸识别人脸识别风格迁移自然语言自然语言处理嵌入
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩