OpenShift Container Platform 4.14 分布式追踪OpenShift Container Platform 4.14 分布式追踪 分布式追踪安装、使用与发行注记 Last Updated: 2024-02-23 OpenShift Container Platform 4.14 分布式追踪 分布式追踪安装、使用与发行注记 法律通告 法律通告 Copyright © 2024 Red Hat, Inc. The text of and are the property of their respective owners. 摘要 摘要 本文档提供了有关如何在 OpenShift Container Platform 中使用分布式追踪的信息。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 目 目录 录 第 第 1 章 章 分布式追踪 分布式追踪发 发行注 行注记 记 1.1. RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM 3.0 发行注记 1.2. RED HAT OPENSHIFT0 码力 | 100 页 | 928.24 KB | 1 年前3
OpenShift Container Platform 4.6 分布式追踪OpenShift Container Platform 4.6 分布式追踪 分布式追踪安装、使用与发行注记 Last Updated: 2023-02-27 OpenShift Container Platform 4.6 分布式追踪 分布式追踪安装、使用与发行注记 Enter your first name here. Enter your surname here. Enter your are the property of their respective owners. 摘要 摘要 本文档提供了有关如何在 OpenShift Container Platform 中使用分布式追踪的信息。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 目 目录 录 第 第 1 章 章 分布式追踪 分布式追踪发 发行注 行注记 记 1.1. 分布式追踪概述 1.2. 让开源更具包容性 1.3. 获取支持 1.4. 新功能及功能增强 1.4.1. Red Hat OpenShift distributed tracing0 码力 | 59 页 | 572.03 KB | 1 年前3
Ozone:Hadoop 原生分布式对象存储Ozone:Hadoop 原生分布式对象存储 Spark大数据博客 - https://www.iteblog.com Ozone:Hadoop 原生分布式对象存储 Hadoop 社区推出了新一代分布式Key-value对象存储系统 Ozone,同时提供对象和文件访问的接 口,从构架上解决了长久以来困扰HDFS的小文件问题。本文作为Ozone系列文章的第一篇,抛个 砖,介绍Ozone的产生背景,主要架构和功能。 有非常多的小文件,HDFS的元数据访问性能会受到影响。虽然可以通过各种Federation技术来扩 展集群的节点规模, 但单个HDFS集群仍然没法很好的解决小文件的限制。 基于这些背景,Hadoop 社区推出了新的分布式存储系统 Ozone,从构架上解决这个问题。 Ozone的设计原则 Ozone 由一群对大规模Hadoop集群有着丰富运维和管理经验的工程师和构架师设计和实现。他 们对大数据有深刻的洞察力,清楚的 终影响了Ozone的设 计和实现。Ozone的设计遵循一下原则: 1 / 10 Ozone:Hadoop 原生分布式对象存储 Spark大数据博客 - https://www.iteblog.com 强一致性 构架简洁性: 当系统出现问题时,一个简单的架构更容易定位,也容易调试。Ozone尽可能的保持架构 的0 码力 | 10 页 | 1.24 MB | 1 年前3
蚂蚁金服Service Mesh渐进式迁移方案Service Mesh Meetup #4 上海站 蚂蚁金服Service Mesh 渐进式迁移方案 2018.11.25 敖小剑 @ 蚂蚁金服 中间件 龙轼 @UC 基础研发部1 Service Mesh演进路线 1 2 实现平滑迁移的关键 3 DNS寻址方案的演进 4 5 总结 DNS寻址方案的后续规划ü 对未来长期目标的认可 • Service Mesh(带控制平面,如Istio) 序列化 链路追踪 故障注入 日志 监控 Metrics 熔断 限流 服务降级 前置条件检查 身份认证 密钥管理 访问控制 …… 下沉到 Service Mesh 轻量级客户端 传统 侵入式 客户端 客户端应该尽可能的轻薄通用: 实现简单,方便跨语言,减少升级可能 最简单,最通用,支持最广 泛的寻址方式方式是什么? 基于服务 发现的寻 址方式ü DNS寻址 • 支持度最好,使用最普遍0 码力 | 40 页 | 11.13 MB | 6 月前3
Chatbots 中对话式交互系统的分析与应用0 码力 | 39 页 | 2.24 MB | 1 年前3
2.4 Go在分布式docker里面的应用_孙宏亮Go在Docker分布式环境中 的应用 孙宏亮@DaoCloud allen.sun@daocloud.io 个人介绍 • 孙宏亮 • DaoCloud技术合伙人,高级工程师 • 热爱golang&docker • 《Docker源码分析》作者 • docker、swarm等项目committer Agenda • Docker生态&Golang • DaoCloud&Golang •0 码力 | 19 页 | 1.27 MB | 1 年前3
Kubevela 以应用为中心的渐进式发布 - 孙健波KubeVela:以应用为中心的 渐进式发布最佳实践 孙健波 阿里云-云原生应用平台团队 技术专家 关于我 • 孙健波 • 阿里云 (@天元) • 云原生应用平台团队--应用管理和应用交付 • Github(@wonderflow) • OAM - Open Application Model (https://oam.dev/) • KubeVela (http://kubevela (http://kubevela.io/) 微信-欢迎交流 目 录 云原生时代的应用与发布挑战 01 KubeVela 简介 02 KubeVela 中的渐进式发布实践 03 云原生时代,应用是怎 么样的? 以 K8s 资源组合为核心 kubernetes/StatefulSet Kubernetes/Deployment K8s 的原生资源组合 1. 复杂、难懂、门槛高 2. 能力局限,不同场景各不相同 helm upgrade 没有灰度 能力。 Helm Chart 基于 CRD 自定义实现 需要大量 K8s 经验才能开发 某游戏公司自定义workload Pinterest 构建一个渐进式发布能力需要解决哪些 问题? • 版本化 • 分批发布 • 滚动发布/原地发布 • 发布暂停 • 发布回滚 • 日志监控 • 健康检查 • 多版本部署 • 多版本流量灰度 • 多集群/多环境灰度 •0 码力 | 26 页 | 9.20 MB | 1 年前3
动手学深度学习 v2.0读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.2.3 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.4 定义模型 . . . . . 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.3.4 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.5 定义损失函数 . . . 网络架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.4.3 全连接层的参数开销 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.4.4 softmax运算 . . .0 码力 | 797 页 | 29.45 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112本书旨在帮助更多的读者朋友了 解、喜欢并进入到人工智能行业中来,因此作者试图从分析人工智能中的简单问题入手,一 步步地提出设想、分析方案以及实现方案,重温当年科研工作者的发现之路,让读者身临其 境式的感受算法设计思想,从而掌握分析问题、解决问题的能力。这种方式也是对读者的基 础要求较少的,读者在学习本书的过程中会自然而然地了解算法的相关背景知识,体会到知 识是为了解决问题而生的,避免陷入为了学习而学习的窘境。 展主要经历了三个阶段,每 个阶段都代表了人们从不同的角度尝试实现人工智能的探索足迹。早期,人们试图通过总 结、归纳出一些逻辑规则,并将逻辑规则以计算机程序的方式实现,来开发出智能系统。 但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被 称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能 机器学习的分类 有监督学习 有监督学习的数据集包含了样本?与样本的标签?,算法模型需要学习到 映射关系??: ? → ?,其中??代表模型函数,?为模型的参数。在训练时,通过计算模型的预 测值??(?)与真实标签?之间的误差来优化网络参数?,使得网络下一次能够预测更精准。常 见的有监督学习有线性回归、逻辑回归、支持向量机、随机森林等。 无监督学习 收集带标签的数据往往代价较为昂贵,对于只有样本0 码力 | 439 页 | 29.91 MB | 1 年前3
机器学习课程-温州大学-15深度学习-GAN深度学习-生成式深度学习 黄海广 副教授 2 03 GAN 的应用 本章目录 01 生成式深度学习简介 02 GAN的理论与实现模型 04 GAN的思考与前景 3 03 GAN 的应用 01 生成式深度学习简介 02 GAN的理论与实现模型 04 GAN的思考与前景 1.生成式深度学习简介 4 深度学习中常见生成式模型 自编码(AE) 其隐变量z是一个单值映射:z=f(x) 变分自编码(VAE) 其隐变量z是一个正态分布的采样 生成式对抗网络(GAN) 条件生成式对抗网络(CGAN) 在生成器和判别器中添加某一标签信息 深度卷积生成式对抗网络(DCGAN) 判别器和生成器都使用了卷积神经网络(CNN)来替代GAN 中的多层感知机 为了使整个网络可微,拿掉了CNN 为了使整个网络可微,拿掉了CNN 中的池化层 将全连接层以全局池化层替代以减轻计算量。 1.生成式深度学习简介 5 自编码(AE)结构图 1.生成式深度学习简介 6 变分自编码(VAE)结构图 1.生成式深度学习简介 7 变分自编码(VAE)生成图像 1.生成式深度学习简介 8 03 GAN 的应用 01 生成式深度学习简介 02 GAN的理论与实现模型 04 GAN的思考与前景0 码力 | 35 页 | 1.55 MB | 1 年前3
共 275 条
- 1
- 2
- 3
- 4
- 5
- 6
- 28













