积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(15)数据库中间件(15)

语言

全部英语(7)中文(简体)(7)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.114 秒,为您找到相关结果约 15 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 5.4.1 Document

    Ultimate Performance Having been polished for years, the driver is close to a native JDBC in terms of efficiency, with ultimate performance. • Ecosystem Compatibility The proxy can be accessed by any application otherwise, Cartesian product association or cross‐library association will occur, affecting query efficiency. For example, if the t_order table and t_order_item table are both sharded according to order_id the Maven Plugin subproject of GraalVM Native Build Tools. By running the unit test under the JVM, label the unit test with junit-platform-unique-ids*, and then build it as GraalVM Native Im‐ age for nativeTest
    0 码力 | 572 页 | 3.73 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 document

    Ultimate Performance Having been polished for years, the driver is close to a native JDBC in terms of efficiency, with ultimate performance. • Ecosystem Compatibility The proxy can be accessed by any application otherwise, Cartesian product association or cross‐library association will occur, affecting query efficiency. For example, if the t_order table and t_order_item table are both sharded according to order_id the Maven Plugin subproject of GraalVM Native Build Tools. By running the unit test under the JVM, label the unit test with junit-platform-unique-ids*, and then build it as GraalVM Native Im‐ age for nativeTest
    0 码力 | 602 页 | 3.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0-alpha Document

    Carte‐ sian product correlation will not appear in the multi‐table correlating query, so the query efficiency will increase greatly. Take this one for example, if SQL is: SELECT i.* FROM t_order o JOIN t_order_item Apache ShardingSphere document, v5.0.0-beta The latter the offset position is, the lower the efficiency of using LIMIT pagination will be. There are many ways to avoid using LIMIT as pagination method Though the execution result of SQL is right, but it has not achieved the most optimized query efficiency. Optimization Rewrite Its purpose is to effectively improve the performance without influencing
    0 码力 | 311 页 | 2.09 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.1 Document

    Cartesian product correlation or cross‐database correlation will appear, which will affect query efficiency. For example, t_order and t_order_item are both sharded by order_id, and use order_id to correlate Cartesian product correlation will not appear in the multi‐tables correlating query, so the query efficiency will increase greatly. Take this one for example, if SQL is: SELECT i.* FROM t_order o JOIN t_order_item ├──attributies ├ ├ ├ ├──${your_instance_ip_a}@${your_instance_port_x} ├ ├ ├ ├ ├──status ├ ├ ├ ├ ├──label ├ ├ ├ ├──${your_instance_ip_b}@${your_instance_pid_y} ├ ├ ├ ├ ├──status ├ ├ ├ ├──.... ├ ├──storage_nodes
    0 码力 | 458 页 | 3.43 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.2 Document

    Cartesian product correlation or cross‐database correlation will appear, which will affect query efficiency. For example, t_order and t_order_item are both sharded by order_id, and use order_id to correlate Cartesian product correlation will not appear in the multi‐tables correlating query, so the query efficiency will increase greatly. Take this one for example, if SQL is: SELECT i.* FROM t_order o JOIN t_order_item Sharding 269 Apache ShardingSphere document, v5.1.2 The latter the offset position is, the lower the efficiency of using LIMIT pagination will be. There are many ways to avoid using LIMIT as pagination method
    0 码力 | 503 页 | 3.66 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.1 Document

    Ultimate Performance Having been polished for years, the driver is close to a native JDBC in terms of efficiency, with ultimate performance. • Ecosystem Compatibility The proxy can be accessed by any application otherwise, Cartesian product association or cross‐library association will occur, affecting query efficiency. For example, if the t_order table and t_order_item table are both sharded according to order_id not be NULL or empty. 42000 12010 Can not support variable ˋ%sˋ. 42S02 12011 Can not find column label ˋ%sˋ. HV008 12020 Column index ˋ%dˋ is out of range. 0A000 12100 DROP TABLE ⋯CASCADE is not supported
    0 码力 | 523 页 | 4.51 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.0 Document

    Ultimate Performance Having been polished for years, the driver is close to a native JDBC in terms of efficiency, with ultimate performance. • Ecosystem Compatibility The proxy can be accessed by any application otherwise, Cartesian product association or cross‐library association will occur, affecting query efficiency. For example, if the t_order table and t_order_item table are both sharded according to order_id that the parsing results of the same SQL can be directly obtained next time to improve parsing efficiency. Therefore, it is recommended that you use PreparedStatement, a SQL‐precompiled method, to improve
    0 码力 | 483 页 | 4.27 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0 Document

    Carte‐ sian product correlation will not appear in the multi‐tables correlating query, so the query efficiency will increase greatly. Take this one for example, if SQL is: SELECT i.* FROM t_order o JOIN t_order_item Sharding 248 Apache ShardingSphere document, v5.0.0 The latter the offset position is, the lower the efficiency of using LIMIT pagination will be. There are many ways to avoid using LIMIT as pagination method Though the execution result of SQL is right, but it has not achieved the most optimized query efficiency. Optimization Rewrite Its purpose is to effectively improve the performance without influencing
    0 码力 | 403 页 | 3.15 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere ElasticJob document Nov 01, 2023

    Support job sharding and high availability in distributed system – Scale out for throughput and efficiency improvement – Job processing capacity is flexible and scalable with the allocation of resources number of the servers, it re‐assigns the job slices to the distributed servers, maximizing the efficiency as the increment of resources. To execute the job in distributed servers, a job will be divided job are very short, it is recommended not to monitor the running status of the job to improve efficiency. There is no need to monitor because it is a transient state. User can add data accumulation monitoring
    0 码力 | 101 页 | 1.53 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    DE 相关链接 • 保留字 • SHOW COMPUTE NODES LABEL|RELABEL COMPUTE NODE 描述 LABEL|RELABEL COMPUTE NODE 语法用于为 PROXY 实例添加标签。 语法 LableRelabelComputeNodes ::= ('LABEL' | 'RELABEL') 'COMPUTE' 'NODE' instance_id PROXY 实例添加标签 LABEL COMPUTE NODE "0699e636-ade9-4681-b37a-65240c584bb3" WITH label_1; • 为 PROXY 实例修改标签 RELABEL COMPUTE NODE "0699e636-ade9-4681-b37a-65240c584bb3" WITH label_2; 保留字 LABEL、RELABEL、COMPUTE、NODE 语法查询获得 示例 • 为 PROXY 实例去除指定标签 UNLABEL COMPUTE NODE "0699e636-ade9-4681-b37a-65240c584bb3" WITH label_1; 保留字 UNLABEL、COMPUTE、NODE、WITH 相关链接 • 保留字 • SHOW COMPUTE NODES 数据迁移 本章节将对数据迁移功能的语法进行详细说明。
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphere5.4Documentv55.0documentalpha5.15.2ElasticJobNov012023中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩