清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 数据分析 Open AI o3mini 响应速度快,高效输出数据分析 结果,分析各因素对关键指标生 存率的影响,语言表达自然,重 点突出结合历史背景对数据规律 进行验证,但没有察觉数据异常。 DeepSeek R1 详细展示长思维链,精准提取关键指 标“幸存率”,分析多个因素特征对 幸存率的影响,结合历史背景对数据 应用与发展方向。其低成本、高性能的模型为AI技术的普及提供了实际 范例,推动了AI技术在训练成本、模型效能和开源生态方面的新标准的形成。 创新技术路径 D e e p S e e k 通 过 算 法 优 化 与 架构创新(如MLA、MoE结 构 ) , 将 训 练 成 本 降 至 行 业 1/10,打破了传统AI巨头依 赖“规模法则”的垄断局面。 其 F P 8 混 合 精 度 训0 码力 | 85 页 | 8.31 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告数据库向量支持 大模型框架、微调 (Fine Tuning) 大模型训练平台与工具 基础设施 LLM Agent 备案上线的中国大模型 知名大模型 知名大模型应用 大模型 算力 工具和平台 LLMOps 大模型聚合平台 开发工具 AI 编程 插件、IDE、终端 代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 另一个视角来看,在大模型繁荣发展的背后,少不了工 具和平台的发力,如 LLMOps 平台、大模型聚合平台 以及相关的开发工具,此外还有它们所依赖的最重要的 资源——算力。 在这些工具、平台和资源的有力支撑下,大模型才得以 一步一个台阶,引领全球开发者步入一个技术新时代。 算力 大模型聚合平台 LLMOps 开发 工具 26 / 32 LLM 的工具和平台:LLMOps LangChain 架构图 (图源:https://python 和 超过 2000 名贡献者。 27 / 32 LLM 的工具和平台:MaaS 平台 Gitee AI 是开源中国旗下的 MaaS 平台,提供模型、数据集,以及应用托管能力,同时接入了丰富的国产算力平台,为开发者 提供了更高效、实惠的微调方案,降低使用门槛,目前已进入内测阶段。 28 / 32 LLM 的工具和平台:开发工具 比较有代表性的 LLM 开发工具有: :帮助用户极致优化0 码力 | 32 页 | 13.09 MB | 1 年前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502技术开放,吸引广大开发人员和用户使用 很多公司参与开源,帮助改进产品,众人拾柴火焰高, 反哺开源产品,形成正循环政企、创业者必读 DeepSeek出现之前的十大预判 之十 中美差距快速缩小 美国预训练堆算力的路线不可持续,有待发现新范式“换道超车” 软件和算法差距并不大,主要差距在工程、硬件等方面 23政企、创业者必读 DeepSeek的出现验证了我们的预判 而DeepSeek的创新更具颠覆性 大数据+大参数+大算力的 预训练Scaling Law的边际效应递减 • 人类构造的训练数据已达上限 • 万亿参数规模之后,继续增大参数规 模难以带来质的提升 • 训练算力成本和工程化难度大幅上升 强化学习Scaling Law • 利用合成数据解决数据用尽问题 • 利用self-play强化学习,在不增大参 数规模前提下,大幅提升复杂推理能力 • 通过后训练算力和推理算力,在不增加 通过后训练算力和推理算力,在不增加 预训练算力前提下,大幅提升模型性能 DeepSeek颠覆式创新——技术创新 26政企、创业者必读 预训练模型如GPT——疯狂读书,积 累知识,Scaling law撞墙 预训练模型思考深度不够 算力见顶,变成少数巨头游戏 预训练大模型 推理大模型 预训练大模型难以通往AGI之路 推理模型如R1——通过逻辑链条推导答案, 分解规划,自我反思 预训练范式像是记忆和模仿,强化学习范0 码力 | 76 页 | 5.02 MB | 5 月前3
人工智能安全治理框架 1.02.1 安全风险方面。通过分析人工智能技术特性,以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。 2.2 技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、 应用场景,提出通过安全软件开发、数据质量提升、安全建设运维、测评监测 加固等技术手段提升人工智能产品及应用的安全性、公平性、可靠性、鲁棒性- 3 - 人工智能安全治理框架 的措施。 执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术垄断和出口管制等单边强制措施制造发展壁垒,恶意阻断 智能自主获取外部资源、自我复制,产生自我意识,寻求外部权力,带来谋求 与人类争夺控制权的风险。 4. 技术应对措施 针对上述安全风险,模型算法研发者、服务提供者、系统使用者等需从 训练数据、算力设施、模型算法、产品服务、应用场景各方面采取技术措施予 以防范。 4.1 针对人工智能内生安全风险 4.1.1 模型算法安全风险应对 (a)不断提高人工智能可解释性、可预测性,为人工智能系统内部构造、-0 码力 | 20 页 | 3.79 MB | 1 月前3
国家人工智能产业综合标准化体系建设指南(2024版)实体经济深度融合,全面赋能新型工业化,深刻改变工业生 产模式和经济发展形态,将对加快建设制造强国、网络强国 和数字中国发挥重要的支撑作用。人工智能产业链包括基础 层、框架层、模型层、应用层等 4 个部分。其中,基础层主 要包括算力、算法和数据,框架层主要是指用于模型开发的 深度学习框架和工具,模型层主要是指大模型等技术和产 品,应用层主要是指人工智能技术在行业场景的应用。近年 来,我国人工智能产业在技术创新、产品创造和行业应用等 撑、关键 技术、智能产品与服务、赋能新型工业化、行业应用、安全 /治理等 7 个部分,如图 1 所示。其中,基础共性标准是人 工智能的基础性、框架性、总体性标准。基础支撑标准主要 规范数据、算力、算法等技术要求,为人工智能产业发展夯 实技术底座。关键技术标准主要规范人工智能文本、语音、 图像,以及人机混合增强智能、智能体、跨媒体智能、具身 智能等的技术要求,推动人工智能技术创新和应用。智能产 智能软件开源基础框架,人工智能系统能效评价,人工智能与资 7 源利用、碳排放、废弃部件处置等标准。 (二)基础支撑标准 基础支撑标准主要包括基础数据服务、智能芯片、智能传感 器、计算设备、算力中心、系统软件、开发框架、软硬件协同等 标准。 1. 基础数据服务标准。规范人工智能研发、测试、应用等 过程中涉及数据服务的要求,包括数据采集、数据标注、数据治 理、数据质量等标准。 2.0 码力 | 13 页 | 701.84 KB | 1 年前3
Deepseek R1 本地部署完全手册32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B) 671B FP8 ≥890GB 2*XE9680(16*H20 GPU) DeepSeek-R1-Distill- 等效A100(BF16) 2. 国产硬件推荐配置 模型参数 推荐⽅案 适⽤场景 1.5B 太初T100加速卡 个⼈开发者原型验证 14B 昆仑芯K200集群 企业级复杂任务推理 32B 壁彻算⼒平台+昇腾910B集群 科研计算与多模态处理 四、云端部署替代⽅案 1. 国内云服务商推荐 平台 核⼼优势 适⽤场景 硅基流动 官⽅推荐API,低延迟,⽀持多模态模型 企业级⾼并发推理 腾讯云 5600+)。 扩展交换空间: 六、注意事项与⻛险提示 1. 成本警示: 70B模型:需3张以上80G显存显卡(如RTX A6000),单卡⽤户不可⾏。 671B模型:需8xH100集群,仅限超算中⼼部署。 2. 替代⽅案: 个⼈⽤户推荐使⽤云端API(如硅基流动),免运维且合规。 3. 国产硬件兼容性:需使⽤定制版框架(如昇腾CANN、沐曦MXMLLM)。 llama-gguf-split0 码力 | 7 页 | 932.77 KB | 8 月前3
DeepSeek从入门到精通(20250204)解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 利益相关者沟通计划(1800字内):设计一个定期向各利益相关者(如高管、 合作伙伴、媒体)汇报项目进展的机制。指明沟通频率、方式和关键信息点。 11. 应急预案(1000字内):为2—3个可能的重大意外情况(如重要环节延期、预 算超支、负面舆情等)制定详细的应急预案。包括触发条件、响应流程和补救措施。 12. 执行后评估机制(700字内):设计一个项目后评估框架,包括效果评估、经 验总结和持续优化建议。指明评估的时间点和主要维度。0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 利益相关者沟通计划(1800字内):设计一个定期向各利益相关者(如高管、 合作伙伴、媒体)汇报项目进展的机制。指明沟通频率、方式和关键信息点。 11. 应急预案(1000字内):为2—3个可能的重大意外情况(如重要环节延期、预 算超支、负面舆情等)制定详细的应急预案。包括触发条件、响应流程和补救措施。 12. 执行后评估机制(700字内):设计一个项目后评估框架,包括效果评估、经 验总结和持续优化建议。指明评估的时间点和主要维度。0 码力 | 103 页 | 5.40 MB | 8 月前3
共 8 条
- 1













