清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单据,即 可自动生成高质量且规范的文献综述,适合快速高效的研究需求。 用户体验对比:可操作性 界面直观:平台设计简洁、直观,使用户能够 方便、快捷地进行文献数据的导入、分析和综 述生成,操作路径清晰,交互体验流畅高效。 模块分区:将功能模块与信息展示分区设计布 局,用户可以轻松找到所需功能,提高了操作 的便捷性和效率。 多语言支持与定制化设置:语言支持对于国内 研究者更为友好,能够适应综述撰写的国内外 界面直观:平台设计简洁、直观, 使用户能够快捷地进行文献数据 的检索、选取和综述生成,操作 路径清晰,交互体验流畅高效。 语言支持:支持英文和中文内容 生成。 PubScholar平台 界面直观:平台设计简洁、直观, 使用户能够快捷地进行文献数据 的检索、选取和综述生成,操作 路径清晰,交互体验流畅高效。 语言支持:支持英文和中文内容 生成。 知网研学平台 界面友好:操作界面简洁明了,用户容易上 推理过程 DeepSeek R1 在推理过程中采用“深度思考”模式,通过展示完整的 推理路径来提高模型的可解释性和可信度。 在生成答案前展示其推理过 程,让用户看到模型如何分 解问题并得出结论。包括模 型对问题的理解、问题分解、 以及逐步求解的过程。 通过展示推理路径,使得 用户能够理解模型的推理 过程。推理路径包括模型 对问题的理解、问题分解、 以及逐步求解的过程。 在推理过程中能够自我 修正,发现并修复之前0 码力 | 85 页 | 8.31 MB | 8 月前3
普通人学AI指南镜像(Image):用于创建容器的只读模板。一个镜像可以包含完整的操作 系统环境。 3. Dockerfile:定义镜像内容的文本文件,包含了构建镜像的所有指令。 4. Docker Hub:公共的 Docker 镜像仓库,用于存储和分发 Docker 镜像。 5. 拉取镜像:docker pull6. 构建镜像:在包含 Dockerfile 目录中运行:docker build -t 1 权限问题 Windows 系统安装,错误提示中带有 Access is denied. 如图 26所示。 Figure 26: ollama 部署权限错误 解决方法:Ollama 默认安装的路径: C:\Users\Wb\AppData\Local\Temp 文件夹没有读取和执行权限的原因,勾上就可以了,如图 27所示: 25 Figure 27: ollama 部署权限解决方法 注意,先不要关闭这个窗口,稍后我们还需要再填入一些信息。 接下来,我们在自己的电脑上,创建一个存放知识库数据的文件夹,然后记 住这个文件夹路径,因为我们还要返回到刚才的上面的界面,找到 Volumes 输 入框,下图 35中 4 处,填入刚才的知识库路径,我的路径如下:/Users/zhen- guo/Documents/words 随后在 Container path 输入框中填入/var/lib/postgresql/data,下图 0 码力 | 42 页 | 8.39 MB | 8 月前3
DeepSeek从入门到精通(20250204)直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 5. 执行需求 需完成具体操作(代码/ 计算/流程) 任务 + 步骤约束 + 输出格 式 自主优化步骤,兼顾效率 与正确性 严格按指令执行,无自主优化 社交媒体:即时性、互动性、个性化、病毒传播 • 传统图书馆:知识储备、系统分类、安静学习、专业指导 (2)共同特征: • 信息存储和检索 • 用户群体链接 • 知识分享 (3)融合点: • 实时知识互动 • 知识深度社交网络 • 数字化图书馆员服务 • 个性化学习路径 输入空间定义 明确要融合的两个或多个概念领域 通用空间识别 找出输入空间之间的共同特征 选择性投射 从输入空间选择相关元素进行融合0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 5. 执行需求 需完成具体操作(代码/ 计算/流程) 任务 + 步骤约束 + 输出格 式 自主优化步骤,兼顾效率 与正确性 严格按指令执行,无自主优化 社交媒体:即时性、互动性、个性化、病毒传播 • 传统图书馆:知识储备、系统分类、安静学习、专业指导 (2)共同特征: • 信息存储和检索 • 用户群体链接 • 知识分享 (3)融合点: • 实时知识互动 • 知识深度社交网络 • 数字化图书馆员服务 • 个性化学习路径 输入空间定义 明确要融合的两个或多个概念领域 通用空间识别 找出输入空间之间的共同特征 选择性投射 从输入空间选择相关元素进行融合0 码力 | 103 页 | 5.40 MB | 8 月前3
国家人工智能产业综合标准化体系建设指南(2024版)口协议和测试方法,及使能软件的访问协议、功能、性能、能效 的测试方法和运行维护要求等标准。 5. 算力中心标准。规范面向人工智能的大规模计算集群、 新型数据中心、智算中心、基础网络通信、算力网络、数据存储 8 等基础设施的技术要求和评估方法,包括基础设施参考架构、计 算能力评估、技术要求、稳定性要求和业务服务接口等标准。 6. 系统软件标准。规范人工智能系统层的软硬件技术要求, 包括软硬件 模型表达和格式、模型效果评价等,包括自监督学习、无监督学 习、半监督学习、深度学习、强化学习等标准。 2. 知识图谱标准。规范知识图谱的描述、构建、运维、共 享、管理和应用,包括知识表示与建模、知识获取与存储、知识 融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、 9 知识图谱交付与应用、知识图谱系统架构与性能要求等标准。 3. 大模型标准。规范大模型训练、推理、部署等环节的技 术要 人机协作、智能体自主操作、多智能体分布式一致性等标准。 10. 群体智能标准。规范群体智能算法的控制、编队、感知、 规划、决策、通信等技术要求和评测方法,包括自主控制、协同 控制、任务规划、路径规划、协同决策、组网通信等标准。 11. 跨媒体智能标准。规范文本、图像、视频、音频等多模 态数据处理基础、转换分析、融合应用等方面的技术要求,包括 数据获取与处理、模态转换、模态对齐、融合与协同、应用扩展0 码力 | 13 页 | 701.84 KB | 1 年前3
人工智能安全治理框架 1.0(b)在设计、研发、部署、维护过程中建立并实施安全开发规范,尽可 能消除模型算法存在的安全缺陷、歧视性倾向,提高鲁棒性。 4.1.2 数据安全风险应对 (a) 在训练数据和用户交互数据的收集、存储、使用、加工、传输、提 供、公开、删除等各环节,应遵循数据收集使用、个人信息处理的安全规则, 严格落实关于用户控制权、知情权、选择权等法律法规明确的合法权益。 (b) 加强知识产权保护,在训练数据选择、结果输出等环节防止侵犯知 2 建立人工智能服务可追溯管理制度。对面向公众服务的人工智能 系统,通过数字证书技术对其进行标识管理。制定出台人工智能生成合成内容 标识标准规范,明确显式、隐式等标识要求,全面覆盖制作源头、传播路径、 分发渠道等关键环节,便于用户识别判断信息来源及真实性。- 11 - 人工智能安全治理框架 5.3 完善人工智能数据安全和个人信息保护规范。针对人工智能技术 及应用特点,明确人工智能训练、标注、使用、输出等各环节的数据安全和个0 码力 | 20 页 | 3.79 MB | 1 月前3
清华大学第二弹:DeepSeek赋能职场且对结果有明确要求 操作路径多元、开放, 且对结果没有明确要求 DeepSeek 两种模型对比(5R) 维度 V3模型 R1模型 Regulation (规范性) 强规范约束 (操作路径明确) 弱规范约束 (操作路径开放) Result (结果导向) 目标确定性高 (结果可预期) 目标开放性高 (结果多样性) Route (路径灵活性) 线性路径 (流程标准化) 网状路径 (多路径探索) Responsiveness 群?未成年群体? 女性群体? DeepSeek R1提示语技巧(开放性) • 不需要角色设定 • 不需要思维链提示 • 不需要结构化提示词 • 不需要给示例 • 不需要做太多解释 • …… 另一种路径:DeepSeek R1 作为智能体 ü 角色 ü 功能 ü 技能 ü 约束 ü 工作流程 ü 输出格式 "全维度智能体提示框架" (Comprehensive Agent Prompting0 码力 | 35 页 | 9.78 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利拟多个虚拟代理,讨论“气候变暖”、“转基因食 品的安全性”和“疫苗的有效性和安全性”三个具 有科学共识的话题。 实验一在无偏误信息条件下,代理通过社交网络进 行每日对话,记录最终信念状态和信息传播路径。 实验二改变初始信念分布,探讨初始条件对结果的 影响。实验三引入10%代理发布的偏误信息,观察 其对信念动态的影响。50个代理人在30天内共生成 194699条对话。 50个智能体的在线社区模拟仿真 格式要求 简单任务 、需快速执行 “用Python编写快速排序函 数, 输出需包含注释 。 ” 结果精准高效 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题 、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案 。 ” 激发模型深层推理 需清晰定义需求边界 混合模式 结合需求描述与关键 趋于一致,而非收敛性提示语和多样化设计能突破逻辑循环。 结合自适应反馈和递进式提示链,可推动智能体生成新内容, 避免知识循环,拓宽智能体的生成空间,为人机共生系统中的 深层交互与创新实践提供新路径。 结合自适应反馈和递进式提示链 让AI生成优质内容 p 当AI面对收敛性高的提示词时,生成内容趋于一致,主要依赖已有知识的重复和组合。提示词的收敛性和对话轮次共 同影响生成内容的相似度和重0 码力 | 65 页 | 4.47 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告为大模型提供高效的存储和检索能力 大模型框架及微调 (Fine Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 Python 为代表 5 / 32 LLM 基础设施:向量数据库/数据库向量支持 向量数据库是专门用于存储和检索向量数据的数据库,它可以为 数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加 “向量支持”也是主流方案。比如 相比前边的大模型框架和微调,一言以蔽之: 、 11 / 32 LLM 基础设施:大模型训练平台与工具 大模型训练平台与工具根据其性质不同,可分为以下几类: 这些平台提供了从模型开发到部署的综合解决方案,包括计算资源、 数据存储、模型训练和部署服务。它们通常提供易于使用的界面,支 持快速迭代和大规模部署。Amazon SageMaker、Google Cloud AI Platform 和 Microsoft Azure0 码力 | 32 页 | 13.09 MB | 1 年前3
Deepseek R1 本地部署完全手册RAM: 4GB - GPU: 集成显卡/现代CPU - 存储: 5GB - 内存: 8GB (M1/M2/M3) - 存储: 5GB 简单⽂本⽣成、基础代 码补全 7B - RAM: 8-10GB - GPU: GTX 1680(4-bit量 化) - 存储: 8GB - 内存: 16GB(M2 Pro/M3) - 存储: 8GB 中等复杂度问答、代码 调试 14B - - RAM: 24GB - GPU: RTX 3090(24GB VRAM) - 存储: 20GB - 内存: 32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B)0 码力 | 7 页 | 932.77 KB | 8 月前3
共 10 条
- 1













