清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet 平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。 多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1 (如医疗、法律)进行优化, 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 小型化设计:轻量级模型, 适合资源有限的环境。 快速响应:优化推理速度, 适合实时交互场景。 通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 量信息,请从中读取每一天的信息,并整理成一张表格,要求包括以下几项信息:1.当天日期;2.当天的铁路客运量、 比2024年同期多或者少的百分比、环比的百分比。3.当天的公路客运量、比2024年同期多或者少的百分比、环比的百分 比。4.当天的民航客运量、比2024年同期多或者少的百分比、环比的百分比。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。0 码力 | 85 页 | 8.31 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM 在多个领域都取得了令人瞩目的成就。在自然语言处 理领域,GPT 系列模型在文本生成、问答系统和对话生成 等任务中展现出色的性能。在知识图谱构建、智能助手开发 等方面,LLM 技术也发挥了关键作用。此外,它还在代码 生成、文本摘要、翻译等任务中展现了强大的通用性。 本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 基础设施、应用现状,以及相关的工具和平台。 大模型训练平台与工具 基础设施 LLM Agent 备案上线的中国大模型 知名大模型 知名大模型应用 大模型 算力 工具和平台 LLMOps 大模型聚合平台 开发工具 AI 编程 插件、IDE、终端 代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 LLM 更全面地处理各种 信息,支持更广泛的应用领域。 图源:https://postgresml.org/docs/.gitbook/assets/ml_system.svg0 码力 | 32 页 | 13.09 MB | 1 年前3
DeepSeek从入门到精通(20250204)主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI) 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI) 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空0 码力 | 103 页 | 5.40 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI 从擅长理解的认知型AI,发展到擅长文字生成的生成式AI 从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI 从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 9政企、创业者必读 人工智能发展历程(二) 从单纯对话的大模型AI,发展到具有行动和执行能力的智能体AI 从数字空 面对全球大模型产业之争,要打赢「三大战役」 AGI之战 应用场景之战 大模型安全之战 • 探索超越人类的超级人工 智能AGI • 不仅是科技之争,更是国 运之争 • 不发展是最大的不安全, 发挥举国体制优势,打赢 追赶之战 • 大模型带来前所未有安全 挑战 • 外挂式传统安全手段难以 应对 • 应对模型安全新挑战,打 赢未雨绸缪之战 • 大模型是能力而非产品, 结合场景才能发挥价值 • 中国拥有最完整的产业链、 中国拥有最完整的产业链、 最全的工业门类、最丰富 的场景 • 发挥场景优势,加速传统 产业数转智改,打赢弯道 超车之战 AGI是全球少数玩家的游戏,政府、企业、创业者更多创新的机会在应用之路 11政企、创业者必读 把大模型拉下神坛! 走入千家万户、百行千业,才能掀起新工业革命 • 当年IBM做出超级电脑,并没有带来工业 革命,因为只有少数人用 • IBM甚至声称,全世界只用5台电脑就够了 • 真正带来信息革命的是个人电脑走入千家0 码力 | 76 页 | 5.02 MB | 5 月前3
国家人工智能产业综合标准化体系建设指南(2024版)和数字中国发挥重要的支撑作用。人工智能产业链包括基础 层、框架层、模型层、应用层等 4 个部分。其中,基础层主 要包括算力、算法和数据,框架层主要是指用于模型开发的 深度学习框架和工具,模型层主要是指大模型等技术和产 品,应用层主要是指人工智能技术在行业场景的应用。近年 来,我国人工智能产业在技术创新、产品创造和行业应用等 方面实现快速发展,形成庞大市场规模。伴随以大模型为代 2 表的新技术加速迭代,人工智能产业呈现出创新技术群体突 坚持创新驱动。优化产业科技创新与标准化联动机制, 加快人工智能领域关键共性技术研究,推动先进适用的科技 创新成果高效转化成标准。 坚持应用牵引。坚持企业主体、市场导向,面向行业应 用需求,强化创新成果迭代和应用场景构建,协同推进人工 3 智能与重点行业融合应用。 坚持产业协同。加强人工智能全产业链标准化工作协 同,加强跨行业、跨领域标准化技术组织的协作,打造大中 小企业融通发展的标准化模式。 坚持 器、计算设备、算力中心、系统软件、开发框架、软硬件协同等 标准。 1. 基础数据服务标准。规范人工智能研发、测试、应用等 过程中涉及数据服务的要求,包括数据采集、数据标注、数据治 理、数据质量等标准。 2. 智能芯片标准。规范智能芯片相关的通用技术要求,包 括智能芯片架构、指令集、统一编程接口及相关测试要求、芯片 数据格式和协议等标准。 3. 智能传感器标准。规范单模态、多模态新型传感器的接0 码力 | 13 页 | 701.84 KB | 1 年前3
人工智能安全治理框架 1.0………………………… 7 4.2 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 ……………………… 14 6 应动态调整更新,需要各方共同对治理框架持续优化完善。 2.1 安全风险方面。通过分析人工智能技术特性,以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。 2.2 技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、 应用场景,提出通过安全软件开发、数据质量提升、安全建设运维、测评监测 加固等技术手段提升人工智能产品及应用的安全性、公平性、可靠性、鲁棒性- 综合治理措施方面。明确技术研发机构、服务提供者、用户、政府 部门、行业协会、社会组织等各方发现、防范、应对人工智能安全风险的措施 手段,推动各方协同共治。 2.4 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,0 码力 | 20 页 | 3.79 MB | 1 月前3
清华大学 普通人如何抓住DeepSeek红利Deepseek的能力图谱 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场 景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 决策支持 文体转换 个性化推荐 翻译与转换 多语言翻译 异常检测 多源信息融合 知识与推理 知识图谱构建 流程优化 数据可视化 数据分析 趋势分析 多模态交互 任务执行 任务协调 文本生成与创作 建议生成 风险评估 辅助决策 概念关联 知识整合 交互能力 情感分析 文本分类 图像理解 跨模态转换 专业建议 任务分解 情感回应 上下文理解 对话能力 多轮对话 数学运算 逻辑分析 能力图谱 诗歌创作 语音识别 指令理解 方案规划 实体识别 l 文本创作 文章/故事/诗歌写作 营销文案 、广告语生成 社交媒体内容(如推文 、帖子) “卷不动了?让DeepSeek帮你一键‘躺赢’!” 场景1:1小时内写完一个1万字的项目书 场景:下午3点,你突然接到领导通知:“今晚4点前必须交一份10000字的智能物流园区项目方案书,客户临时提 前会议!”你大脑一片空白——手头只有零散的会议记录、几份过时的模板,且对“智能物流”技术细节不熟。电 脑右下角显示时间:3:05 PM,你手心冒汗,疯狂翻找资料,但文档光标始终停留在标题页…… 场景1:1小时内写完一个1万字的项目书0 码力 | 65 页 | 4.47 MB | 8 月前3
普通人学AI指南文本、视频、3D 模型等。具体来说,AIGC 技术可以生成如下类型的内容: • 图像:如照片、原创艺术作品 • 音频:如视频游戏中的配音、音乐 • 文本:如代码、广告文案、小说 • 3D 模型:如角色、场景 目前,AIGC 技术处于早期阶段,最常见的产品形态是基于文本的,通过用 户输入来控制内容的生成。用户输入文本描述所需的内容,然后模型输出与描 述相符的内容。下图 1描述了 AI 大模型,AIGC 8B 和 70B 模型。 图 2,时间线主要根据技术论文的发布日期(例如提交至 arXiv 的日期)来 确定大型语言模型(大小超过 10B)的发展历程。如果没有相应的论文,我们 将模型的日期设定为其公开发布或宣布的最早时间。我们用黄色标记那些公开 可用的模型检查点。由于空间限制,我们只包括那些公开报道评估结果的大型 语言模型。 Figure 2: 各个大型语言模型发布时间线 5 1.4 基础概念 ChatGPT 是一个由 OpenAI 开发的大型语言模型,它基于 GPT(Generative Pre-trained Transformer)架构。这种模型通过分析大量的文本数据来学习语 言结构和信息,使其能够生成连贯的文本、回答问题、撰写文章、进行对话等。 6 Figure 3: AI 问答工具 ChatGPT 经过特别训练,可以理解和生成人类语言,从而在多种应用场景中提 供辅助,包括聊天机器人、写作辅助、信息查询等。0 码力 | 42 页 | 8.39 MB | 8 月前3
Deepseek R1 本地部署完全手册版权归:HomeBrew Ai Club 作者wechat:samirtan 版本:V2.0 更新⽇期:2025年2⽉8⽇ ⼀、简介 Deepseek R1 是⽀持复杂推理、多模态处理、技术⽂档⽣成的⾼性能通⽤⼤语⾔模型。本⼿册 为技术团队提供完整的本地部署指南,涵盖硬件配置、国产芯⽚适配、量化⽅案、云端替代⽅ 案及完整671B MoE模型的Ollama部署⽅法。 核⼼提示: 运维复杂。 企业⽤户:需专业团队⽀持,部署前需评估ROI(投资回报率)。 ⼆、本地部署核⼼配置要求 1. 模型参数与硬件对应表 模型参 数 Windows 配置要求 Mac 配置要求 适⽤场景 1.5B - RAM: 4GB - GPU: 集成显卡/现代CPU - 存储: 5GB - 内存: 8GB (M1/M2/M3) - 存储: 5GB 简单⽂本⽣成、基础代 码补全 7B - GPU: RTX 3090(24GB VRAM) - 存储: 20GB - 内存: 32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B) 671B FP80 码力 | 7 页 | 932.77 KB | 8 月前3
共 14 条
- 1
- 2













