积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(9)人工智能(9)

语言

全部中文(简体)(7)中文(简体)(2)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 9 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    指令:我想让您担任学术期刊编辑,我将向您提供一份手稿摘要,您将向我提供 5 个好的研究论文英文标题,并解释为什 么这个标题是好的。请将输出结果以 Markdown 表格的形式提供,表格有两列,标题为中文。第一列给出英文标题,第二 列给出中文解释。以下文本为摘要: 【指令后加上文章的摘要】。 中-英、英-中互译指令 指令:我想让你充当一名科研类的英汉翻译,我会向你提供一种语言的一些段落,你的任务是将这些段落准确地、学术性 您应使用人工智能工具(如自然语言处理)以及有关有效写作技巧 的修辞知识和经验进行回复。我会给你如下段落,请告诉我是用什么语言写的,然后翻译。我希望你能以标记表的形式给出 输出结果,其中第一列是原文,第二列是翻译后的句子,每行只给出一个句子 所提供段落的语言是中文,以下是按要求的标记表格式翻译成英文的译文: Original (Chinese) Translation (English) 清晰度、简洁性和整体可读性, 同时分解长句,减少重复,并提供改进建议。请仅提供文本的更正版本,并附上解释。以 markdown 表格的形式提供 输出结果,每个句子单独成行。第一列为原句,第二列为修改后的句子,第三列为中文解释。请编辑以下文本: 原始句子 优化后句子 中文释义 捕食是一个基本的生态过程,捕食的定义为:一 种生物(捕食者)捕食了另一种生物(猎物)(Begon 等,1997)。
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导 “证明勾股定理” 冗余拆解(如“先画图,再列公式”) 通用模型 显式要求分步思考,提供示例 “请分三步推导勾股定理,参考: 1. 画直角三角形…” 直接提问(易跳过关键步骤) 创意写作 推理模型 鼓励发散性,设定角色/风格 “以海明威的风格写一个冒险故事” 接,以设计一 个创新的知识共享平台。 (1)输入概念: • 社交媒体:即时性、互动性、个性化、病毒传播 • 传统图书馆:知识储备、系统分类、安静学习、专业指导 (2)共同特征: • 信息存储和检索 • 用户群体链接 • 知识分享 (3)融合点: • 实时知识互动 • 知识深度社交网络 • 数字化图书馆员服务 • 个性化学习路径 输入空间定义 明确要融合的两个或多个概念领域
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导 “证明勾股定理” 冗余拆解(如“先画图,再列公式”) 通用模型 显式要求分步思考,提供示例 “请分三步推导勾股定理,参考: 1. 画直角三角形…” 直接提问(易跳过关键步骤) 创意写作 推理模型 鼓励发散性,设定角色/风格 “以海明威的风格写一个冒险故事” 接,以设计一 个创新的知识共享平台。 (1)输入概念: • 社交媒体:即时性、互动性、个性化、病毒传播 • 传统图书馆:知识储备、系统分类、安静学习、专业指导 (2)共同特征: • 信息存储和检索 • 用户群体链接 • 知识分享 (3)融合点: • 实时知识互动 • 知识深度社交网络 • 数字化图书馆员服务 • 个性化学习路径 输入空间定义 明确要融合的两个或多个概念领域
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    为大模型提供高效的存储和检索能力 大模型框架及微调 (Fine Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 Python 为代表 5 / 32 LLM 基础设施:向量数据库/数据库向量支持 向量数据库是专门用于存储和检索向量数据的数据库,它可以为 数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加 “向量支持”也是主流方案。比如 相比前边的大模型框架和微调,一言以蔽之: 、 11 / 32 LLM 基础设施:大模型训练平台与工具 大模型训练平台与工具根据其性质不同,可分为以下几类: 这些平台提供了从模型开发到部署的综合解决方案,包括计算资源、 数据存储、模型训练和部署服务。它们通常提供易于使用的界面,支 持快速迭代和大规模部署。Amazon SageMaker、Google Cloud AI Platform 和 Microsoft Azure
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    RAM: 4GB - GPU: 集成显卡/现代CPU - 存储: 5GB - 内存: 8GB (M1/M2/M3) - 存储: 5GB 简单⽂本⽣成、基础代 码补全 7B - RAM: 8-10GB - GPU: GTX 1680(4-bit量 化) - 存储: 8GB - 内存: 16GB(M2 Pro/M3) - 存储: 8GB 中等复杂度问答、代码 调试 14B - - RAM: 24GB - GPU: RTX 3090(24GB VRAM) - 存储: 20GB - 内存: 32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B)
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    口协议和测试方法,及使能软件的访问协议、功能、性能、能效 的测试方法和运行维护要求等标准。 5. 算力中心标准。规范面向人工智能的大规模计算集群、 新型数据中心、智算中心、基础网络通信、算力网络、数据存储 8 等基础设施的技术要求和评估方法,包括基础设施参考架构、计 算能力评估、技术要求、稳定性要求和业务服务接口等标准。 6. 系统软件标准。规范人工智能系统层的软硬件技术要求, 包括软硬件 模型表达和格式、模型效果评价等,包括自监督学习、无监督学 习、半监督学习、深度学习、强化学习等标准。 2. 知识图谱标准。规范知识图谱的描述、构建、运维、共 享、管理和应用,包括知识表示与建模、知识获取与存储、知识 融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、 9 知识图谱交付与应用、知识图谱系统架构与性能要求等标准。 3. 大模型标准。规范大模型训练、推理、部署等环节的技 术要
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    处理提示语 用户 输入提示语 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导 “证明勾股定理 ” 冗余拆解(如“先画图,再列公式 ”) 通用模型 显式要求分步思考,提供示例 “请分三步推导勾股定理,参考: 1. 画直角三角形 … ” 直接提问(易跳过关键步骤) 创意写作 推理模型 鼓励发散性,设定角色/风格 “以海明威的风格写一个冒险故事
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 普通人学AI指南

    镜像(Image):用于创建容器的只读模板。一个镜像可以包含完整的操作 系统环境。 3. Dockerfile:定义镜像内容的文本文件,包含了构建镜像的所有指令。 4. Docker Hub:公共的 Docker 镜像仓库,用于存储和分发 Docker 镜像。 5. 拉取镜像:docker pull 6. 构建镜像:在包含 Dockerfile 目录中运行:docker build -t
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    (b)在设计、研发、部署、维护过程中建立并实施安全开发规范,尽可 能消除模型算法存在的安全缺陷、歧视性倾向,提高鲁棒性。 4.1.2 数据安全风险应对 (a) 在训练数据和用户交互数据的收集、存储、使用、加工、传输、提 供、公开、删除等各环节,应遵循数据收集使用、个人信息处理的安全规则, 严格落实关于用户控制权、知情权、选择权等法律法规明确的合法权益。 (b) 加强知识产权保护,在训练数据选择、结果输出等环节防止侵犯知
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
共 9 条
  • 1
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研入门精通20250204清华华大大学开源中国2023模型LLM技术报告DeepseekR1本地部署完全手册国家人工智能人工智能产业综合标准标准化体系建设指南2024普通通人普通人如何抓住红利AI安全治理框架1.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩