积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部中文(简体)(10)中文(简体)(2)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。以 GPT 系列为代表,LLM 以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM 在多个领域都取得了令人瞩目的成就。在自然语言处 理领域,GPT 系列模型在文本生成、问答系统和对话生成 等任务中展现出色的性能。在知识图谱构建、智能助手开发 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加 “向量支持”也是主流方案。比如 等传 统数据库均已支持向量检索。 6 持快速迭代和大规模部署。Amazon SageMaker、Google Cloud AI Platform 和 Microsoft Azure Machine Learning 都是提供端到 端机器学习服务的云平台。 这些工具和库专门为加速机器学习模型的训练和推理而设计,通常利 用 GPU 或 TPU 等硬件。这类工具可以显著提高训练和推理的速度, 使得处理大规模数据集和复杂模型变得可行。NVIDIA CUDA
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    企业政企、创业者必读 人工智能发展历程(一)  从早期基于规则的专家系统,走向基于学习训练的感知型AI  从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI  从擅长理解的认知型AI,发展到擅长文字生成的生成式AI  从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI  从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 认知决定行动,这场全民AI科普对推动中国AI发展功不可没政企、创业者必读 开源改变行业格局,建立强大生态  开源战胜闭源,促使全球公司、开发者等转到开源  建立强大生态,成为全球人工智能根技术,无推广情况下各国 政府、企业、云厂商纷纷接入,获得全球最大影响力  改变中美竞争格局:美国是闭源封闭垄断思路,中国领导开源 文化,加速中国领先地位  中国人民使用的AI工具先进性已超过美国,普及率超过美国, 使用AI人口 ,形成分布式推理网络  技术门槛降低, 可标准化、SaaS化部署,下载就能用 DeepSeek颠覆式创新——成本暴跌 35政企、创业者必读 惠及全球人民,科技平权,技术平民化  运营商、云服务可免费用,降低云服务成本  大型企业可使用多个DeepSeek,解决不同场景需求  中小企业免费部署,消除数字鸿沟  个人可以拥有自己的DeepSeek ,可以成为超级个体  对于创业者得
    0 码力 | 76 页 | 5.02 MB | 6 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 • 数据报告自动化生成:基于o3mini自动 生成格式化的数据报告,包括图表、表格和文 字说明,帮助管理者快速理解分析结果。 • 数据接口标准化:根据标准格式输出数据, 利用o3mini方便不同系统和平台之间的数据 共享,提升跨机构协作效率。 • 情感分析与数据解读:利用o3mini结合 情感分析,对数据进行深入解读,帮助市场调 研等领域理解消费者情感,优化产品和策略。 • 故事化数据呈现:借助o3mini将数据以 create a table? 切分数据 Can you create a graph using this data? 制作一个图 Can you create a world cloud? 做一个词云 Can you create a chart using this data? 画一个图表 What are the rows and columns in this dataset? 描述一下行和列
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 普通人学AI指南

    它可以理解、学习和应用知识跨越各种不同领域,功能上等同于人类智能。 与专用人工智能(AI)不同,AGI 能够执行任何智力任务,具备自我意识和 自适应学习能力。AGI 的研发目标是创造出可以广泛地模拟人类认知能力的智 能系统。 1.3 大模型 大模型通常指的是大规模的人工智能模型,这类模型通过训练大量的数据来获 得广泛的知识和能力。这些模型通常具有庞大的参数数量,能够处理复杂的任 务,如自然语言理解、图像识别、语音识别等。 1.2 Claude Claude 是 Anthropic 公司开发的一系列大型语言模型,它设计用于执行多种涉 及语言、推理、分析和编码的任务。 2.1.3 通义千问 通义千问(Qwen)是阿里云开发的一系列预训练的大型语言模型,用于聊天、 生成内容、提取信息、总结、翻译、编码、解决数学问题等多种任务。这些模型 在多种语言数据上进行预训练,包括中文和英文,覆盖广泛的领域。 2.2 图像 Figure 6: AI 编程工具 2.4.3 AirOps 用于生成和修改 SQL 语句的工具,旨在简化数据库操作。 2.4.4 ChatDev 面壁智能开发的 AI 智能体开发平台,支持创建和部署智能对话系统。 2.4.5 solo Mozilla 开源项目,提供零代码网站开发功能,易于使用。 2.4.6 Cursor 开源的 AI 代码编辑器,旨在通过 AI 技术助力快速软件开发。 2.4.7
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    :可以根据特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 3. 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网 连接或网络受限的场景。提高系统稳定性:即使云服务宕机,本地大模型依 然可以正常工作,不受外部因素影响。 本教程搭建 DeepSeek 好处 本地搭建 DeepSeek 三个比较实际的好处: • 本教程接入的是 DeepSeek 推理模型
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    32B 壁彻算⼒平台+昇腾910B集群 科研计算与多模态处理 四、云端部署替代⽅案 1. 国内云服务商推荐 平台 核⼼优势 适⽤场景 硅基流动 官⽅推荐API,低延迟,⽀持多模态模型 企业级⾼并发推理 腾讯云 ⼀键部署+限时免费体验,⽀持VPC私有化 中⼩规模模型快速上线 PPIO派欧云 价格仅为OpenAI 1/20,注册赠5000万tokens 低成本尝鲜与测试 2. 国际接⼊渠道(需魔法或外企上⽹环境 DeepSeek-R1-UD- IQ1_M 158 GB ≥200 GB 消费级硬件(如Mac Studio) DeepSeek-R1-Q4_K_M 404 GB ≥500 GB ⾼性能服务器/云GPU 下载地址: HuggingFace模型库 Unsloth AI官⽅说明 2. 硬件配置建议 硬件类型 推荐配置 性能表现(短⽂本⽣成) 消费级设备 Mac Studio(192GB统⼀内存) cn/i/OBklluwO 4. 字节跳动⽕⼭引擎:https://console.volcengine.com/ark/region:ark+cn-beijing/experience 5. 百度云千帆:https://console.bce.baidu.com/qianfan/modelcenter/model/buildIn/list 6. 英伟达NIM:https://build.nvidia
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    手段,推动各方协同共治。 2.4 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 可靠性、有效性,还可能导致训练偏差、偏见歧视放大、泛化能力不足或输出 错误。 (d)数据泄露风险。人工智能研发应用过程中,因数据处理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点 形态安全和伦理安全。如果用户输入的提示词存在不良内容,在模型安全防护 机制不完善的情况下,有可能输出违法有害内容。 (b)混淆事实、误导用户、绕过鉴权的风险。人工智能系统及输出内容 等未经标识,导致用户难以识别交互对象及生成内容来源是否为人工智能系统, 难以鉴别生成内容的真实性,影响用户判断,导致误解。同时,人工智能生成 图片、音频、视频等高仿真内容,可能绕过现有人脸识别、语音识别等身份认 证机制,导致认证鉴权失效。
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    ① 解决独居老人安全问题; ② 结合传感器网络和AI预警; ③ 提供三种不同技术路线的原型草图说明。" �实战技巧: 还要不要学提示语? 提示语(Prompt)是用户输入给AI系统的指令或信息,用于 引导AI生成特定的输出或执行特定的任务。简单来说,提示语 就是我们与AI“对话”时所使用的语言,它可以是一个简单的问 题,一段详细的指令,也可以是一个复杂的任务描述。 提示语的基本结构包括指令、上下文和期望 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 开发提示语策略,应对复杂场景 表1-3-2提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 ▪ 要求AI生成有争议、不道德或非法内容。 ▪ 对AI的拒绝或警告感到困惑或不满。 ▪ 尝试绕过AI的安全机制。 ▪ 忽视AI输出可能带来的伦理影响。 应对策略: ▪ 了解界限:熟悉AI系统的基本伦理准则和限制。 ▪ 合法合规:确保你的请求符合法律和道德标准。 ▪ 伦理指南:在提示语中明确包含伦理考虑和指导原则。 ▪ 影响评估:要求AI评估其建议或输出的潜在社会影响。 AI伦理考虑要点
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    ① 解决独居老人安全问题; ② 结合传感器网络和AI预警; ③ 提供三种不同技术路线的原型草图说明。" �实战技巧: 还要不要学提示语? 提示语(Prompt)是用户输入给AI系统的指令或信息,用于 引导AI生成特定的输出或执行特定的任务。简单来说,提示语 就是我们与AI“对话”时所使用的语言,它可以是一个简单的问 题,一段详细的指令,也可以是一个复杂的任务描述。 提示语的基本结构包括指令、上下文和期望 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 开发提示语策略,应对复杂场景 表1-3-2提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 ▪ 要求AI生成有争议、不道德或非法内容。 ▪ 对AI的拒绝或警告感到困惑或不满。 ▪ 尝试绕过AI的安全机制。 ▪ 忽视AI输出可能带来的伦理影响。 应对策略: ▪ 了解界限:熟悉AI系统的基本伦理准则和限制。 ▪ 合法合规:确保你的请求符合法律和道德标准。 ▪ 伦理指南:在提示语中明确包含伦理考虑和指导原则。 ▪ 影响评估:要求AI评估其建议或输出的潜在社会影响。 AI伦理考虑要点
    0 码力 | 103 页 | 5.40 MB | 9 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    国家人工智能产业综合标准化体系建设指南 (2024版) 为深入贯彻落实党中央、国务院关于加快发展人工智能 的部署要求,贯彻落实《国家标准化发展纲要》《全球人工 智能治理倡议》,进一步加强人工智能标准化工作系统谋划, 加快构建满足人工智能产业高质量发展和“人工智能+”高水 平赋能需求的标准体系,夯实标准对推动技术进步、促进企 业发展、引领产业升级、保障产业安全的支撑作用,更好推 进人工智能赋能新型工业化,特制定本指南。 术语标准。规范人工智能相关技术、应用的概念定义, 为其它标准的制定和人工智能研究提供参考,包括人工智能相关 术语定义、范畴、实例等标准。 2. 参考架构标准。规范人工智能相关技术、应用及系统的 逻辑关系和相互作用,包括人工智能参考架构、人工智能系统生 命周期及利益相关方等标准。 3. 测试评估标准。规范人工智能技术发展的成熟度、人工 智能体系架构之间的适配度、行业发展水平、企业智能化能力等 方面的测试及评 企业智能化能力框架及测评要求等标准。 4. 管理标准。规范人工智能技术、产品、系统、服务等全 生命周期涉及的人员、组织管理要求和评价,包括面向人工智能 组织的管理要求,人工智能管理体系、分类方法、评级流程等标 准。 5. 可持续标准。规范人工智能影响环境的技术框架、方法 和指标,平衡产业发展与环境保护,包括促进生态可持续的人工 智能软件开源基础框架,人工智能系统能效评价,人工智能与资 7 源利用、碳排放、废弃部件处置等标准。
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
开源中国2023模型LLM技术报告周鸿祎清华演讲DeepSeek我们带来创业机会360202502清华大学DeepResearch科研普通通人普通人AI指南图解10PDFDeepseekR1本地部署完全手册人工智能人工智能安全治理框架1.0入门精通20250204华大大学国家产业综合标准标准化体系建设2024
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩