积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(15)人工智能(15)

语言

全部中文(简体)(11)中文(简体)(2)[zh](1)英语(1)

格式

全部PDF文档 PDF(14)TXT文档 TXT(1)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 15 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • [zh]
  • 英语
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    互联网创造了能写140个字的推特和分享照片的Instagram AI能帮助人解决登陆火星、能源自由的问题 5政企、创业者必读 大模型是真智能,是人工智能的重大拐点。你相不相信? 大模型是一场工业革命,将重塑所有产品和业务。你相不相信? 不拥抱AI的组织和个人,会被拥抱AI的组织和个人淘汰。你相不相信? 建立AI信仰 6政企、创业者必读 大模型不是泡沫,而是新一轮工业革命的驱动引擎 蒸汽革命 电气革命 信息革命 传统AGI发展步伐在放慢 需要寻找新方向  Scaling Law边际效应递减  人类训练数据接近枯竭  合成数据无法创造新知识  推理能力难以泛化,成本高昂 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式  大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」  大模型厂商都在探索慢思考、思维链技术政企、创业者必读 多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地  能够调用各种工具,具有行动能力  调用企业专业知识,更懂企业  将日常重复性业务流程形成Playbook,实现流程自动化  通过目标拆解,多次调用大模型以及专家模型协同,形成 慢思考能力 传统软件是辅助人的工具,Agent是能够自主工作的数字员工,是新的生产力政企、创业者必读
    0 码力 | 76 页 | 5.02 MB | 6 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 5支持联网查询网址,Claude 3.5 sonnet暂不支持;  四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表;  在复杂爬虫任务上,DeepSeek R1与Open AI o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完 整准确;其他2个模型都存在多次调试但代码仍然运行不成功的问题,如代码 爬虫数据采集存在代码错误问题  数据分析能力相对较弱 数据应用情况总结 新思路:优势互补,协同应用 Claude+DeepSeek 数据处理的“洗髓易筋” Claude 3.5 Sonnet 在文本提取 上较稳定,可用于数据清洗, DeepSeek R1 可确保数据完整性 DeepSeek+Open AI 数据采集的“天罗地网” DeepSeek R1 负责精准爬取和筛 选数据,Open AI
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    :这些框架经过优化,以充分利用 GPU、TPU 等高性能计算硬件,以加速模型 的训练和推理过程。 :为了处理大型数据集和大规模参 数网络,这些框架通常设计得易于水平扩展, 支持在多个处理器或多个服务器上并行处理。 :它们提供工具来有效地加 载、处理和迭代大型数据集,这对于训练大 型模型尤为重要。 国产深度学习框架 OneFlow 架构 (图源:https://www.oneflow.org/a/chanpin/oneflow/) 选择预训练模型:选取一个已经在大量数据上进 行过预训练的模型作为起点; 2.准备任务特定数据:收集与目标任务直接相关的 数据集,这些数据将用于微调模型; 3.微调训练:在任务特定数据上训练预训练的模型, 调整模型参数以适应特定任务; 4.评估:在验证集上评估模型性能,确保模型对新 数据有良好的泛化能力; 5.部署:将性能经验证的模型部署到实际应用中去。 微调的过程也是分类模型训练的过程 (图源:https://medium 持快速迭代和大规模部署。Amazon SageMaker、Google Cloud AI Platform 和 Microsoft Azure Machine Learning 都是提供端到 端机器学习服务的云平台。 这些工具和库专门为加速机器学习模型的训练和推理而设计,通常利 用 GPU 或 TPU 等硬件。这类工具可以显著提高训练和推理的速度, 使得处理大规模数据集和复杂模型变得可行。NVIDIA CUDA
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 DeepSeek图解10页PDF

    保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 3. 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网 连接或网络受限的场景。提高系统稳定性:即使云服务宕机,本地大模型依 然可以正常工作,不受外部因素影响。 料用心打磨且开源,是为了帮助更多人了解获取 AI 知识,严禁拿此资料引流、出书、等形式的商业活动 通用性更强。大模型和我们自己基于某个特定数据集(如 ImageNet、20News- Group)训练的模型在本质上存在一些重要区别。主要区别之一,大模型更 加通用,这是因为它们基于大量多样化的数据集进行训练,涵盖了不同领域 和任务的数据。这种广泛的学习使得大模型具备了较强的知识迁移能力和 多任务处理能力,从 训练目标是最小化预测误差,使其能更好地完成语言任务。 2.3.2 监督微调(Supervised Fine-Tuning, SFT) 在预训练之后,通常需要对模型进行监督微调(SFT):使用人工标注的数 据集,让模型在特定任务上优化表现。调整参数,使其更符合人类需求,如 问答、对话生成等任务。 2.3.3 强化学习(Reinforcement Learning, RL) 采用强化学习(RL)方法进行优化,主要通过人类反馈强化学习(RLHF
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 普通人学AI指南

    AGI 关系。 Figure 1: AI 大模型,AIGC 和 AGI 关系 4 1.2 AGI AGI(Artificial General Intelligence,人工通用智能)是一种理论上的人工智能, 它可以理解、学习和应用知识跨越各种不同领域,功能上等同于人类智能。 与专用人工智能(AI)不同,AGI 能够执行任何智力任务,具备自我意识和 自适应学习能力。AGI 的研发目标是创造出可以广泛地模拟人类认知能力的智 中,”T” 常用来表示模型在训练中处理的 Token 数量。Token 是指模型处理的 基本单元,可以是一个单词、子词,或者字符等。 在大规模预训练语言模型的训练中,通常会提到模型是在多少个 Token 上 进行学习的,以表明模型的训练规模和数据量。例如:LLaMA3 语言模型使用 了超过 15T 个 token 进行训练。 2 AI 工具梳理 大家有没有觉得 AI 工具太多,种类太多,老的还没用,新的就出来,头大得 1.2 Claude Claude 是 Anthropic 公司开发的一系列大型语言模型,它设计用于执行多种涉 及语言、推理、分析和编码的任务。 2.1.3 通义千问 通义千问(Qwen)是阿里云开发的一系列预训练的大型语言模型,用于聊天、 生成内容、提取信息、总结、翻译、编码、解决数学问题等多种任务。这些模型 在多种语言数据上进行预训练,包括中文和英文,覆盖广泛的领域。 2.2 图像 Figure
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    科研计算与多模态处理 四、云端部署替代⽅案 1. 国内云服务商推荐 平台 核⼼优势 适⽤场景 硅基流动 官⽅推荐API,低延迟,⽀持多模态模型 企业级⾼并发推理 腾讯云 ⼀键部署+限时免费体验,⽀持VPC私有化 中⼩规模模型快速上线 PPIO派欧云 价格仅为OpenAI 1/20,注册赠5000万tokens 低成本尝鲜与测试 2. 国际接⼊渠道(需魔法或外企上⽹环境  ) 英伟达NIM:企业级GPU集群部署(链接) DeepSeek-R1-UD- IQ1_M 158 GB ≥200 GB 消费级硬件(如Mac Studio) DeepSeek-R1-Q4_K_M 404 GB ≥500 GB ⾼性能服务器/云GPU 下载地址: HuggingFace模型库 Unsloth AI官⽅说明 2. 硬件配置建议 硬件类型 推荐配置 性能表现(短⽂本⽣成) 消费级设备 Mac Studio(192GB统⼀内存) cn/i/OBklluwO 4. 字节跳动⽕⼭引擎:https://console.volcengine.com/ark/region:ark+cn-beijing/experience 5. 百度云千帆:https://console.bce.baidu.com/qianfan/modelcenter/model/buildIn/list 6. 英伟达NIM:https://build.nvidia
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 要求多角度分析:明确要求AI提供不同的观点或论据。 ▪ 批判性思考:对AI的输出保持警惕,交叉验证重要信息。 幻觉生成陷阱:当AI自信地胡说八道 陷阱症状: ▪ AI提供的具体数据或事实无法验证 ▪ 输出中包含看似专业但实际上不存在的术语 或概念 ▪ 对未来或不确定事件做出过于具体的预测 应对策略: ▪ 明确不确定性:鼓励AI在不确定时明确说明。 ▪ 事实核查提示:要求AI区分已知事实和推测。 ▪ 多源验证:要求AI从多个角度或来源验证信 涌现思维模型:利用集体智慧的提示语设计 提示语链的概念与特征 提示语链是用于引导AI生成内容的连续性提示语序列。通过将复 杂任务分解成多个可操作的子任务,确保生成的内容逻辑清晰、 主题连贯。从本质上看,提示语链是一种“元提示”(meta-prompt) 策略,它不仅告诉AI“做什么”,更重要的是指导AI“如何做”。 提示语链的设计和应用建立在多个理论基础之上,包括认知 心理学、信息处理理论、系统理论、创造性思维理论和元认
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 要求多角度分析:明确要求AI提供不同的观点或论据。 ▪ 批判性思考:对AI的输出保持警惕,交叉验证重要信息。 幻觉生成陷阱:当AI自信地胡说八道 陷阱症状: ▪ AI提供的具体数据或事实无法验证 ▪ 输出中包含看似专业但实际上不存在的术语 或概念 ▪ 对未来或不确定事件做出过于具体的预测 应对策略: ▪ 明确不确定性:鼓励AI在不确定时明确说明。 ▪ 事实核查提示:要求AI区分已知事实和推测。 ▪ 多源验证:要求AI从多个角度或来源验证信 涌现思维模型:利用集体智慧的提示语设计 提示语链的概念与特征 提示语链是用于引导AI生成内容的连续性提示语序列。通过将复 杂任务分解成多个可操作的子任务,确保生成的内容逻辑清晰、 主题连贯。从本质上看,提示语链是一种“元提示”(meta-prompt) 策略,它不仅告诉AI“做什么”,更重要的是指导AI“如何做”。 提示语链的设计和应用建立在多个理论基础之上,包括认知 心理学、信息处理理论、系统理论、创造性思维理论和元认
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    图片、音频、视频等高仿真内容,可能绕过现有人脸识别、语音识别等身份认 证机制,导致认证鉴权失效。 (c)不当使用引发信息泄露风险。政府、企业等机构工作人员在业务工 作中不规范、不当使用人工智能服务,向大模型输入内部业务数据、工业信息, 导致工作秘密、商业秘密、敏感业务数据泄露。 (d)滥用于网络攻击的风险。人工智能可被用于实施自动化网络攻击或- 6 - 人工智能安全治理框架 提高攻击效率,包括挖掘利用 重点领域使用者应使用高安全级别的密码策略,启用多因素认证机 制,增强账户安全性。 (e)重点领域使用者应增强网络安全、供应链安全等方面的能力,降低 人工智能系统被攻击、重要数据被窃取或泄露的风险,保障业务不中断。 (f) 重点领域使用者应合理限制人工智能系统对数据的访问权限,制定 数据备份和恢复计划,定期对数据处理流程进行检查。 (g)重点领域使用者应确保操作符合保密规定,在处理敏感数据时使用
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    算力中心标准。规范面向人工智能的大规模计算集群、 新型数据中心、智算中心、基础网络通信、算力网络、数据存储 8 等基础设施的技术要求和评估方法,包括基础设施参考架构、计 算能力评估、技术要求、稳定性要求和业务服务接口等标准。 6. 系统软件标准。规范人工智能系统层的软硬件技术要求, 包括软硬件编译器架构和优化方法、人工智能算子库、芯片软件 运行时库及调试工具、人工智能软硬件平台计算性能等标准。 7
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
周鸿祎清华演讲DeepSeek我们带来创业机会360202502清华大学DeepResearch科研开源中国2023模型LLM技术报告图解10PDF普通通人普通人AI指南DeepseekR1本地部署完全手册入门精通20250204华大大学人工智能人工智能安全治理框架1.0国家产业综合标准标准化体系建设2024
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩