积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(52)Python(52)Django(2)Flask(1)

语言

全部中文(简体)(25)英语(22)中文(繁体)(1)

格式

全部PDF文档 PDF(51)DOC文档 DOC(1)
 
本次搜索耗时 0.127 秒,为您找到相关结果约 52 个.
  • 全部
  • 后端开发
  • Python
  • Django
  • Flask
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyConChina2022-杭州-Pants:Python工程化必备构建工具-沈达

    Pants: Python工程化 必备构建工具 主讲人: 沈达 – 比图科技数据工程师 Pants 2 https://www.pantsbuild.org 面向任意规模代码仓库的高性能、可扩展、用户友好的构建系统。 由 主要实现 用 定义构建 对 支持最好 Pants 1 诞生于推特 Pants 2 涅槃重生 由Toolchain赞助 人生苦短,我用Python 用户 JupyterLab 个人:JupyterLab最佳实践 用户 JupyterLab 痛点:如何快速启动 痛点:如何分享、协作 痛点:如何管理依赖 模版工程 https://github.com/da-tubi/jupyterlab-best-practice 企业项目:多个子项目的Python代码仓库 模版工程 https://github.com/da-tubi/pants-pyspark-subprojects • 可扩展 智能依赖 • 新建子项目简单 • 开发环境和生产环境一致 • 本地缓存(SaaS支持:远程缓存) • 只要没有import,就会智能排除 业余项目:如何分发用Python实现的插件 示例工程 https://github.com/texmacs/plugins-in-python JAR • Executable • Assembly PEX • Executable • Assembly
    0 码力 | 9 页 | 975.41 KB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Python 版

    位数的整数(例如学号),那么我们就可以用效率更高的“基数排序”来做,将时间复杂度降为 ?(??) , 其中 ? 为位数。当数据体量很大时,节省出来的运行时间就能创造较大价值(成本降低、体验变好等)。 在工程领域中,大量问题是难以达到最优解的,许多问题只是被“差不多”地解决了。问题的难易程度一方 面取决于问题本身的性质,另一方面也取决于观测问题的人的知识储备。人的知识越完备、经验越多,分析 问题就会越深入,问题就能被解决得更优雅。 ”章节后再来复习。 那么,迭代和递归具有什么内在联系呢?以上述递归函数为例,求和操作在递归的“归”阶段进行。这意味 着最初被调用的函数实际上是最后完成其求和操作的,这种工作机制与栈的“先入后出”原则异曲同工。 事实上,“调用栈”和“栈帧空间”这类递归术语已经暗示了递归与栈之间的密切关系。 1. 递:当函数被调用时,系统会在“调用栈”上为该函数分配新的栈帧,用于存储函数的局部变量、参数、 返回地址等数据。 界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。根据此原则,可以总结出以下计数简化技巧。 1. 忽略 ?(?) 中的常数项。因为它们都与 ? 无关,所以对时间复杂度不产生影响。 2. 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为
    0 码力 | 364 页 | 18.43 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.1.0 Python版

    ”章节后再来复习。 那么,迭代和递归具有什么内在联系呢?以上述递归函数为例,求和操作在递归的“归”阶段进行。这意味 着最初被调用的函数实际上是最后完成其求和操作的,这种工作机制与栈的“先入后出”原则异曲同工。 事实上,“调用栈”和“栈帧空间”这类递归术语已经暗示了递归与栈之间的密切关系。 1. 递:当函数被调用时,系统会在“调用栈”上为该函数分配新的栈帧,用于存储函数的局部变量、参数、 返回地址等数据。 界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。根据此原则,可以总结出以下计数简化技巧。 1. 忽略 ?(?) 中的常数项。因为它们都与 ? 无关,所以对时间复杂度不产生影响。 2. 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为 非常贵,随 CPU 打包计价 我们可以将计算机存储系统想象为图 4‑9 所示的金字塔结构。越靠近金字塔顶端的存储设备的速度越快、容 量越小、成本越高。这种多层级的设计并非偶然,而是计算机科学家和工程师们经过深思熟虑的结果。 ‧ 硬盘难以被内存取代。首先,内存中的数据在断电后会丢失,因此它不适合长期存储数据;其次,内存 的成本是硬盘的几十倍,这使得它难以在消费者市场普及。 ‧ 缓存的大容量和高速度难以兼得。随着
    0 码力 | 364 页 | 18.42 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Python版

    ”章节后再来复习。 那么,迭代和递归具有什么内在联系呢?以上述递归函数为例,求和操作在递归的“归”阶段进行。这意味 着最初被调用的函数实际上是最后完成其求和操作的,这种工作机制与栈的“先入后出”原则异曲同工。 事实上,“调用栈”和“栈帧空间”这类递归术语已经暗示了递归与栈之间的密切关系。 1. 递:当函数被调用时,系统会在“调用栈”上为该函数分配新的栈帧,用于存储函数的局部变量、参数、 返回地址等数据。 界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。根据此原则,可以总结出以下计数简化技巧。 1. 忽略 ?(?) 中的常数项。因为它们都与 ? 无关,所以对时间复杂度不产生影响。 2. 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为 非常贵,随 CPU 打包计价 我们可以将计算机存储系统想象为图 4‑9 所示的金字塔结构。越靠近金字塔顶端的存储设备的速度越快、容 量越小、成本越高。这种多层级的设计并非偶然,而是计算机科学家和工程师们经过深思熟虑的结果。 ‧ 硬盘难以被内存取代。首先,内存中的数据在断电后会丢失,因此它不适合长期存储数据;其次,内存 的成本是硬盘的几十倍,这使得它难以在消费者市场普及。 ‧ 缓存的大容量和高速度难以兼得。随着
    0 码力 | 362 页 | 17.54 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 Python版

    为两步:首先统计操作数量,然后判断渐近上界。 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以被忽略。根据此原则,可以总结出以下计数简化技巧: 1. 忽略与 ? 无关的操作。因为它们都是 ?(?) 中的常数项,对时间复杂度不产生影响。 2. 复杂度 hello‑algo.com 18 2. 省略所有系数。例如,循环 对数字的引用。因此,我们会发现两个数组中的相同数字拥有同一个 id ,并且这些数字的内 存地址是无需连续的。 66 5. 栈与队列 5.1. 栈 「栈 Stack」是一种遵循先入后出(First In, Last Out)原则的线性数据结构。 我们可以将栈类比为桌面上的一摞盘子,如果需要拿出底部的盘子,则需要先将上面的盘子依次取出。我们 将盘子替换为各种类型的元素(如整数、字符、对象等),就得到了栈数据结构。 在栈 len(stack) # 判断是否为空 is_empty: bool = len(stack) == 0 5.1.2. 栈的实现 为了深入了解栈的运行机制,我们来尝试自己实现一个栈类。 栈遵循先入后出的原则,因此我们只能在栈顶添加或删除元素。然而,数组和链表都可以在任意位置添加和 删除元素,因此栈可以被视为一种受限制的数组或链表。换句话说,我们可以“屏蔽”数组或链表的部分无 关操作,使其对外表现的逻辑符合栈的特性。
    0 码力 | 329 页 | 27.34 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Python版

    29 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以被忽略。根据此原则,可以总结出以下计数简化技巧。 1. 忽略 ?(?) 中的常数项。因为它们都与 ? 无关,所以对时间复杂度不产生影响。 2. 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为 len(stack) # 判断是否为空 is_empty: bool = len(stack) == 0 5.1.2 栈的实现 为了深入了解栈的运行机制,我们来尝试自己实现一个栈类。 栈遵循先入后出的原则,因此我们只能在栈顶添加或删除元素。然而,数组和链表都可以在任意位置添加和 删除元素,因此栈可以被视为一种受限制的数组或链表。换句话说,我们可以“屏蔽”数组或链表的部分无 关操作,使其对外表现的逻辑符合栈的特性。 hello‑algo.com 94 5.2.3 队列典型应用 ‧ 淘宝订单。购物者下单后,订单将加入队列中,系统随后会根据顺序依次处理队列中的订单。在双十一 期间,短时间内会产生海量订单,高并发成为工程师们需要重点攻克的问题。 ‧ 各类待办事项。任何需要实现“先来后到”功能的场景,例如打印机的任务队列、餐厅的出餐队列等。 队列在这些场景中可以有效地维护处理顺序。 5.3 双向队列 在队列中
    0 码力 | 361 页 | 30.64 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Python版

    ‧ 独立于编程语言,即可用多种语言实现。 1.2.2. 数据结构定义 「数据结构 Data Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计原则有: ‧ 空间占用尽可能小,节省计算机内存。 ‧ 数据操作尽量快,包括数据访问、添加、删除、更新等。 1. 引言 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 1) 统计操作数量 对着代码,从上到下一行一行地计数即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作 数量 ?(?) 中的各种系数、常数项都可以被忽略。根据此原则,可以总结出以下计数偷懒技巧: 1. 跳过数量与 ? 无关的操作。因为他们都是 ?(?) 中的常数项,对时间复杂度不产生影响。 2. 省略所有系数。例如,循环 2? 次、5? + 1 次、⋯⋯,都可以化简记为 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你可以按任意顺序返回答案。 「暴力枚举」和「辅助哈希表」分别对应 空间最优 和 时间最优 的两种解法。本着时间比空间更宝贵的原则,后 者是本题的最佳解法。 方法一:暴力枚举 考虑直接遍历所有所有可能性。通过开启一个两层循环,判断两个整数的和是否为 target ,若是则返回它俩 的索引(即下标)即可。 # === File:
    0 码力 | 178 页 | 14.67 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Python版

    ‧ 独立于编程语言,即可用多种语言实现。 1.2.2. 数据结构定义 「数据结构 Data Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计原则有: ‧ 空间占用尽可能小,节省计算机内存。 ‧ 数据操作尽量快,包括数据访问、添加、删除、更新等。 1. 引言 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 1) 统计操作数量 对着代码,从上到下一行一行地计数即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作 数量 ?(?) 中的各种系数、常数项都可以被忽略。根据此原则,可以总结出以下计数偷懒技巧: 1. 跳过数量与 ? 无关的操作。因为他们都是 ?(?) 中的常数项,对时间复杂度不产生影响。 2. 省略所有系数。例如,循环 2? 次、5? + 1 次、⋯⋯,都可以化简记为 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你可以按任意顺序返回答案。 「暴力枚举」和「辅助哈希表」分别对应 空间最优 和 时间最优 的两种解法。本着时间比空间更宝贵的原则,后 者是本题的最佳解法。 方法一:暴力枚举 考虑直接遍历所有所有可能性。通过开启一个两层循环,判断两个整数的和是否为 target ,若是则返回它俩 的索引(即下标)即可。 # === File:
    0 码力 | 186 页 | 15.69 MB | 1 年前
    3
  • pdf文档 Python3 基础教程 - 廖雪峰

    对象上,由运行时该对象的确切类型 决定,这就是多态真正的威力:调用方只管调用,不管细节,而当我们 新增一种 Animal 的子类时,只要确保 run()方法编写正确,不用管原来 的代码是如何调用的。这就是著名的“开闭”原则: 对扩展开放:允许新增 Animal 子类; 对修改封闭:不需要修改依赖 Animal 类型的 run_twice()等函数。 继承还可以一级一级地继承下来,就好比从爷爷到爸爸、再到儿子这样 MySQL,大家都在用,一般错不了;  PostgreSQL,学术气息有点重,其实挺不错,但知名度没有 MySQL 高;  sqlite,嵌入式数据库,适合桌面和移动应用。 作为 Python 开发工程师,选择哪个免费数据库呢?当然是 MySQL。因 为 MySQL 普及率最高,出了错,可以很容易找到解决方法。而且,围 绕 MySQL 有一大堆监控和运维的工具,安装和使用很方便。 为了能继续后面的学习,你需要从 的字符串,简单的页面还可以,但是,想 想新浪首页的 6000 多行的 HTML,你确信能在 Python 的字符串中正确 地写出来么?反正我是做不到。 俗话说得好,不懂前端的 Python 工程师不是好的产品经理。有 Web 开 发经验的同学都明白,Web App 最复杂的部分就在 HTML 页面。HTML 不仅要正确,还要通过 CSS 美化,再加上复杂的 JavaScript 脚本来实现
    0 码力 | 531 页 | 5.15 MB | 1 年前
    3
  • pdf文档 Python 标准库参考指南 2.7.18

    It offers several advantages over the float datatype: • Decimal 类型的“设计是基于考虑人类习惯的浮点数模型,并且因此具有以下最高指导原则——计算机 必须提供与人们在学校所学习的算术相一致的算术。”——摘自 decimal 算术规范描述。 • Decimal numbers can be represented exactly. In Reference, 发布 2.7.18 sqrt([context]) 返回参数的平方根精确到完整精度。 to_eng_string([context]) 转换为字符串,如果需要指数则会使用工程标注法。 工程标注法的指数是 3 的倍数。这会在十进制位的左边保留至多 3 个数码,并可能要求添加一至 两个末尾零。 例如,此方法会将 Decimal('123E+1') 转换为 Decimal('1.23E+3')。 18 sqrt(x) 非负数基于上下文精度的平方根。 subtract(x, y) 返回 x 和 y 的差。 to_eng_string(x) 转换为字符串,如果需要指数则会使用工程标注法。 工程标注法的指数是 3 的倍数。这会在十进制位的左边保留至多 3 个数码,并可能要求添加一至 两个末尾零。 to_integral_exact(x) 舍入到一个整数。 to_sci_string(x)
    0 码力 | 1552 页 | 7.42 MB | 9 月前
    3
共 52 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
PyConChina2022杭州PantsPython工程工程化必备构建工具沈达Hello算法1.2简体中文简体中文1.11.00b40b50b10b2Python3基础教程基础教程雪峰标准参考指南2.718
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩