JVM 内存模型
JVM 内存模型 Heap Method Area Runtime Constant Pool Thread Thread Thread PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method0 码力 | 1 页 | 48.42 KB | 1 年前3领域驱动设计&中台/用状态机封装领域逻辑
用状态机封装领域逻辑 潘加宇 CONTENTS 01 状态机的作用 02 状态机要点和建模思路 03 状态机的实现 危险! 小孩耍大枪 危险! 新瓶装旧酒 Research?Re-Search? 连Re-Search都没有,随意发明新词 Subdomain?主题图。 测试 答对问题有奖金 金额从2.56元到20.48元 请扫我微信以便当场转账 加微信时烦告知尊姓大名 三个不同的图 图形 视角 映射到实现 类图 全局、静态 类的签名 序列图 局部(用例)、动态 类之间的协作 状态机图 类、动态 所有的逻辑 测试 答对问题有奖金 金额从2.56元到20.48元 请扫我微信以便当场转账 加微信时烦告知尊姓大名 作用 逻辑内移 都以为自己在做正常的事情, 系统却出问题了 强制封装保护信息完整性 条件语句?泛化?不重要了 作用 帮助定义恰当的责任 测试 答对问题有奖金 金额从2.56元到20.48元 请扫我微信以便当场转账 加微信时烦告知尊姓大名 状态 入口动作和出口动作 entry:进入时必须执行 exit:离开时必须执行 逻辑进一步内收 迁移 迁移的结构和执行顺序 1. 当前状态是否能接受事件 2. 警戒条件 如果为真 3. Exit:先子后父 4. Action和Message 5. 改变状态0 码力 | 30 页 | 1.75 MB | 1 年前3RustBelt - Rust 的形式化语义模型
第三届中国 Rust 开发者大会 王俊吉 RustBelt - Rust 的形式化语义模型 Outline Background • RustBelt Project • Rust Types Overview Rust Semantics • Type System • The own Predict • Exclusive Ownership & Mutable Borrow0 码力 | 21 页 | 2.63 MB | 1 年前3领域驱动设计&中台/架构分层模型适配
架构分层模型适配 吴雪峰@201811 — 有效防⽌止架构腐化实践 CONTENTS 01 DDD分层参考架构 02 严纪律律 防腐化 — 分层模型适配 03 分层模型适配实例例 DDD分层参考架构 DDD分层参考架构 给⽤用户提供界⾯面,关注⽤用户交互和体验 前端应⽤用 API服务 业务领域 基础设施 为前端应⽤用提供API服务,关注事务和分布式等技术性问题 领域模型和领域逻辑,关注业务概念。 领域模型和领域逻辑,关注业务概念。 访问外界系统(调⽤用外界系统)的技术相关实现。 后台服务 前端应⽤用 分层依据: ⼲干系⼈人和技术点 DDD分层参考架构 - 前端应⽤用 DDD重点关注后台业务服务,不不解决前端交互问题 前端界⾯面 API服务 业务领域 基础设施 前端应⽤用 前端应⽤用 ⼲干系⼈人: 终端⽤用户 诉求: 良好的⽤用户体验 技术点: ⼈人机交互设计和实现 UX关注的层 ⼤大量量业务逻辑堆积 模型: • View Object • Resource Model DDD分层参考架构 领域模型和领域逻辑,关注业务概念。 前端应⽤用 API服务 领域模型 基础设施 ⼲干系⼈人: 业务领域专家,业务领导 诉求: 表现业务概念和实现业务价值 要点: 业务建模和复杂性管理理 ⼯工作内容: • 建⽴立业务模型,并体现在代码上 • 管理理模型复杂度,适度拆分模块0 码力 | 39 页 | 2.54 MB | 1 年前3Java 应用与开发 - Java 内存模型与分配机制
大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 Java 应用与开发 Java 内存模型与分配机制 王晓东 wangxiaodong@ouc.edu.cn 中国海洋大学 September 30, 2018 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 学习目标 1. 理解 JVM 内存模型,掌握 JVM 内存构成 2 建立编程时高效利用内存、避免内存溢出的理念 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 ���� Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 大纲 Java 内存模型 Java 程序内存运行分析 Java Java栈 程序计数器 本地方法栈 执行引擎 本地接口 通过全限定名装载 操作系统 操作系统本地库 运行时数据区 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 JVM 内存模型 动画演示 JVM 内存模型 JVM内存模型 Heap Method Area Runtime Constant Pool Thread Thread Thread PC Register0 码力 | 44 页 | 818.30 KB | 1 年前32 使用Python训练和部署低精度模型 张校捷
使用Python训练和部署低精度模型 (TensorFlow版) 张校捷 2019/9/21 目录 CONTENTS 低精度的概念和意义 TensorFlow的FP16模型 TensorRT的FP16/Int8模型 总结 1 低精度的概念和意义 实数的16-bit半精度浮点数和8-bit定点数表示 使用低精度的意义 深度学习模型中实数的表示 FP32: E8M23 FP16: ResNet-50-v1.5 3.3X speedup SSD-RN50-FPN-640 2.5X speedup FP16浮点数(E5M10)的表示范围 FP16模型的训练方法 Int8模型的推断过程 2 TensorFlow的FP16模型 实数的16-bit半精度浮点数和8-bit定点数表示 使用低精度的意义 TensorCores适用条件 1. 卷积:K(输入通道),C(输出通道) 2 2=1 TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32=1 TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32=1 TensorFlow手动转换模型 import tensorflow as tf import numpy as numpy input = tf.placeholder(dtype=tf.float32, shape=[None0 码力 | 24 页 | 981.45 KB | 1 年前31 藤井美娜 Python的NLP实战分享 如何实现合同风险预测模型
Python的NLP实战分享 如何实现合同风险预测模型? GVA TECH Co., Ltd 藤井美娜 自我介绍 2% |# | self-introduction • Machine Learning Engineer / Data Scientist • GVA TECH的人工智能法律服务AI-CON的多语言系统 开发负责人 inazo18 藤井美娜 目录 CONTENTS CONTENTS 1. Python NLP 入门 2. 多语言NLP攻略 3.“合同风险预测模型”实战经验分享 4. 总结 5% |### | today’s topic 1 Python NLP 入门 简单介绍自然语言处理的流程和使用corpus的EDA方法。 8% |##### | section1 NLP基础 11% |######### | section1 收集语料 前处理 section1 收集语料 前处理 分词 向量化 机器学习模型 各种OUTPUT 语义解析 NLP基础 22% |################## | section1 收集语料 前处理 分词 向量化 机器学习模型 各种OUTPUT 语义解析 有时候会把语义分析的结果做成 feature,放进机器学习模型里。 EDA NLP基础 25% |###################0 码力 | 36 页 | 3.95 MB | 1 年前33 Python的NLP实战分享 如何实现合同风险预测模型 藤井美娜
Python的NLP实战分享 如何实现合同风险预测模型? GVA TECH Co., Ltd 藤井美娜 自我介绍 2% |# | self-introduction • Machine Learning Engineer / Data Scientist • GVA TECH的人工智能法律服务AI-CON的多语言系统 开发负责人 inazo18 藤井美娜 目录 CONTENTS CONTENTS 1. Python NLP 入门 2. 多语言NLP攻略 3.“合同风险预测模型”实战经验分享 4. 总结 5% |### | today’s topic 1 Python NLP 入门 简单介绍自然语言处理的流程和使用corpus的EDA方法。 8% |##### | section1 NLP基础 11% |####### | section1 收集语料 前处理 分词 收集语料 前处理 分词 向量化 (Vectorization) 机器学习模型 各种OUTPUT 语义解析 NLP基础 19% |################ | section1 收集语料 前处理 分词 向量化 机器学习模型 语义解析 有时候会把语义分析的结果feature, 放进机器学习模型里。 各种OUTPUT EDA NLP基础 23% |###################0 码力 | 33 页 | 1.67 MB | 1 年前32022年美团技术年货 合辑
271 美团搜索中查询改写技术的探索与实践 297 美团内部讲座 | 清华大学崔鹏:因果启发的学习、推断和决策 325 NeurIPS 2021 | Twins:重新思考高效的视觉注意力模型设计 339 目录 iv > 2022年美团技术年货 美团获得小样本学习榜单 FewCLUE 第一! Prompt Learning+ 自训练实战 353 DSTC10 开放领域对话评估比赛冠军方法总结 远程热部署在美团的落地实践 692 日志导致线程 Block 的这些坑,你不得不防 713 基于 AI 算法的数据库异常监测系统的设计与实现 775 目录 < v Replication(上):常见复制模型 & 分布式系统挑战 792 Replication(下):事务,一致性与共识 818 TensorFlow 在美团外卖推荐场景的 GPU 训练优化实践 855 CompletableFuture BFF 中的实践 992 外卖广告大规模深度学习模型工程实践 | 美团外卖广告工程实践专题连载 1013 数据库全量 SQL 分析与审计系统性能优化之旅 1048 数据库异常智能分析与诊断 1059 美团外卖广告智能算力的探索与实践(二) 1079 Linux 下跨语言调用 C++ 实践 1101 GPU 在外卖场景精排模型预估中的应用实践 1130 美团集群调度系统的云原生实践0 码力 | 1356 页 | 45.90 MB | 1 年前3美团点评2018技术年货
大数据存储对内存的消耗 美团、大众点评运营的城市成千上万,如果每条运营的投放数据都包含大量的城市列表信息,对机器内存 势必产生一定消耗。 b. 过滤性能问题 b. 过滤性能问题 城市的过滤逻辑大体是这样:用户所在城市与从数据库获取到的城市列表(“1,2,3,4…… ”)进行匹配, 在每次匹配过程中都需要做字符串“split”的切割操作。这种操作的特点是流量越大,对机器CPU的消耗 越大。 营资源从制作到最后在C端展示,需要经过运营人员的投放、测试预览、审核及发布的中间流程。这里对 于一些敏感的运营资源,需要通过安全部门的审查。安全审查主要涉及到敏感词的处理、敏感图片的检测 等。对运营配置平台来说,它完全是一个“黑盒模型”。这里主要涉及到两种情况: 1. 资源上线时 2. 资源上线后 APPKIT打造稳定、灵活、高效的运营配置平台 - 美团技术团队 4.4 监控层 4.4 监控层 APPKIT-SDK运行 进行监控,其中包括:APPKIT中 心服务的调用QPS,机器的性能,网络流量等通用指标。 五、底层模型–灵活性设计 五、底层模型–灵活性设计 5.1 从一个例子切入 5.1 从一个例子切入 数据模型往往与业务相关。业务越复杂,设计需要越简单,这样方能满足复杂业务的各种变化。因为数据 模型太过于抽象,如果直接进行述说会有些乏味,我们可以先从一个具体的业务实例入手。下面是大众点 评App顶0 码力 | 229 页 | 61.61 MB | 1 年前3
共 457 条
- 1
- 2
- 3
- 4
- 5
- 6
- 46