Hello 算法 1.2.0 简体中文 Kotlin 版算法的时间效率往往不是固定的,而是与输入数据的分布有关。假设输入一个长度为 ? 的数组 nums ,其中 nums 由从 1 至 ? 的数字组成,每个数字只出现一次;但元素顺序是随机打乱的,任务目标是返回元素 1 的 索引。我们可以得出以下结论。 ‧ 当 nums = [?, ?, ..., 1] ,即当末尾元素是 1 时,需要完整遍历数组,达到最差时间复杂度 ?(?) 。 ‧ 当 nums = [1, ?, ?索引 */ fun findOne(nums: Array ): Int { for (i in nums.indices) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) 杂度可以体现算法在随机输入数据下的 运行效率,用 Θ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱 的,因此元素 1 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 ?/2 ,平 均时间复杂度为 Θ(?/2) = Θ(?) 。 但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。 0 码力 | 382 页 | 18.48 MB | 10 月前3
Hello 算法 1.1.0 Kotlin版算法的时间效率往往不是固定的,而是与输入数据的分布有关。假设输入一个长度为 ? 的数组 nums ,其中 nums 由从 1 至 ? 的数字组成,每个数字只出现一次;但元素顺序是随机打乱的,任务目标是返回元素 1 的 索引。我们可以得出以下结论。 ‧ 当 nums = [?, ?, ..., 1] ,即当末尾元素是 1 时,需要完整遍历数组,达到最差时间复杂度 ?(?) 。 ‧ 当 nums = [1, ?, ? in 0..索引 */ fun findOne(nums: Array ): Int { for (i in nums.indices) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) 杂度可以体现算法在随机输入数据下的 运行效率,用 Θ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱 的,因此元素 1 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 ?/2 ,平 均时间复杂度为 Θ(?/2) = Θ(?) 。 但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。 0 码力 | 381 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0b4 Python版某些算法的时间复杂度不是固定的,而是与输入数据的分布有关。例如,假设输入一个长度为 ? 的数组 nums ,其中 nums 由从 1 至 ? 的数字组成,但元素顺序是随机打乱的;算法的任务是返回元素 1 的索引。我们可 以得出以下结论: ‧ 当 nums = [?, ?, ..., 1] ,即当末尾元素是 1 时,需要完整遍历数组,此时达到 最差时间复杂度 ?(?) 。 ‧ 当 nums = [1, 随机打乱数组元素 random.shuffle(nums) return nums def find_one(nums: list[int]) -> int: """ 查找数组 nums 中数字 1 所在索引""" for i in range(len(nums)): # 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) # 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if nums[i] 度」可以体现算法在随机输入数据下 的运行效率,用 Θ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱 的,因此元素 1 出现在任意索引的概率都是相等的,那么算法的平均循环次数则是数组长度的一半 ? 2 ,平均 时间复杂度为 Θ(? 2) = Θ(?) 。 但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分0 码力 | 329 页 | 27.34 MB | 1 年前3
Hello 算法 1.0.0b4 C++版某些算法的时间复杂度不是固定的,而是与输入数据的分布有关。例如,假设输入一个长度为 ? 的数组 nums ,其中 nums 由从 1 至 ? 的数字组成,但元素顺序是随机打乱的;算法的任务是返回元素 1 的索引。我们可 以得出以下结论: ‧ 当 nums = [?, ?, ..., 1] ,即当末尾元素是 1 时,需要完整遍历数组,此时达到 最差时间复杂度 ?(?) 。 ‧ 当 nums = [1, shuffle(nums.begin(), nums.end(), default_random_engine(seed)); return nums; } /* 查找数组 nums 中数字 1 所在索引 */ int findOne(vector&nums) { for (int i = 0; i < nums.size(); i++) { // 当元素 1 在数组头部时,达到最佳时间复杂度 度」可以体现算法在随机输入数据下 的运行效率,用 Θ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱 的,因此元素 1 出现在任意索引的概率都是相等的,那么算法的平均循环次数则是数组长度的一半 ? 2 ,平均 时间复杂度为 Θ(? 2) = Θ(?) 。 但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分 0 码力 | 343 页 | 27.39 MB | 1 年前3
Hello 算法 1.0.0b4 Java版某些算法的时间复杂度不是固定的,而是与输入数据的分布有关。例如,假设输入一个长度为 ? 的数组 nums ,其中 nums 由从 1 至 ? 的数字组成,但元素顺序是随机打乱的;算法的任务是返回元素 1 的索引。我们可 以得出以下结论: ‧ 当 nums = [?, ?, ..., 1] ,即当末尾元素是 1 时,需要完整遍历数组,此时达到 最差时间复杂度 ?(?) 。 ‧ 当 nums = [1, int[n]; for (int i = 0; i < n; i++) { res[i] = nums[i]; } return res; } /* 查找数组 nums 中数字 1 所在索引 */ int findOne(int[] nums) { for (int i = 0; i < nums.length; i++) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) 度」可以体现算法在随机输入数据下 的运行效率,用 Θ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱 的,因此元素 1 出现在任意索引的概率都是相等的,那么算法的平均循环次数则是数组长度的一半 ? 2 ,平均 时间复杂度为 Θ(? 2) = Θ(?) 。 但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分0 码力 | 342 页 | 27.39 MB | 1 年前3
Hello 算法 1.0.0b4 Golang版某些算法的时间复杂度不是固定的,而是与输入数据的分布有关。例如,假设输入一个长度为 ? 的数组 nums ,其中 nums 由从 1 至 ? 的数字组成,但元素顺序是随机打乱的;算法的任务是返回元素 1 的索引。我们可 以得出以下结论: ‧ 当 nums = [?, ?, ..., 1] ,即当末尾元素是 1 时,需要完整遍历数组,此时达到 最差时间复杂度 ?(?) 。 ‧ 当 nums = [1, Shuffle(len(nums), func(i, j int) { nums[i], nums[j] = nums[j], nums[i] }) return nums } /* 查找数组 nums 中数字 1 所在索引 */ func findOne(nums []int) int { for i := 0; i < len(nums); i++ { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) 度」可以体现算法在随机输入数据下 的运行效率,用 Θ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱 的,因此元素 1 出现在任意索引的概率都是相等的,那么算法的平均循环次数则是数组长度的一半 ? 2 ,平均 时间复杂度为 Θ(? 2) = Θ(?) 。 但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分0 码力 | 347 页 | 27.40 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Swift 版算法的时间效率往往不是固定的,而是与输入数据的分布有关。假设输入一个长度为 ? 的数组 nums ,其中 nums 由从 1 至 ? 的数字组成,每个数字只出现一次;但元素顺序是随机打乱的,任务目标是返回元素 1 的 索引。我们可以得出以下结论。 ‧ 当 nums = [?, ?, ..., 1] ,即当末尾元素是 1 时,需要完整遍历数组,达到最差时间复杂度 ?(?) 。 ‧ 当 nums = [1, ?, ? n } var nums = Array(1 ... n) // 随机打乱数组元素 nums.shuffle() return nums } /* 查找数组 nums 中数字 1 所在索引 */ func findOne(nums: [Int]) -> Int { 第 2 章 复杂度分析 www.hello‑algo.com 41 for i in nums.indices { 杂度可以体现算法在随机输入数据下的 运行效率,用 Θ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱 的,因此元素 1 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 ?/2 ,平 均时间复杂度为 Θ(?/2) = Θ(?) 。 但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。0 码力 | 379 页 | 18.48 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Ruby 版算法的时间效率往往不是固定的,而是与输入数据的分布有关。假设输入一个长度为 ? 的数组 nums ,其中 nums 由从 1 至 ? 的数字组成,每个数字只出现一次;但元素顺序是随机打乱的,任务目标是返回元素 1 的 索引。我们可以得出以下结论。 ‧ 当 nums = [?, ?, ..., 1] ,即当末尾元素是 1 时,需要完整遍历数组,达到最差时间复杂度 ?(?) 。 ‧ 当 nums = [1, ?, ? 3, ..., n nums = Array.new(n) { |i| i + 1 } # 随机打乱数组元素 nums.shuffle! end ### 查找数组 nums 中数字 1 所在索引 ### def find_one(nums) for i in 0...nums.length 第 2 章 复杂度分析 www.hello‑algo.com 41 # 当元素 1 在数组头部时,达到最佳时间复杂度 杂度可以体现算法在随机输入数据下的 运行效率,用 Θ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱 的,因此元素 1 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 ?/2 ,平 均时间复杂度为 Θ(?/2) = Θ(?) 。 但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。0 码力 | 372 页 | 18.44 MB | 10 月前3
Hello 算法 1.1.0 Python版算法的时间效率往往不是固定的,而是与输入数据的分布有关。假设输入一个长度为 ? 的数组 nums ,其中 nums 由从 1 至 ? 的数字组成,每个数字只出现一次;但元素顺序是随机打乱的,任务目标是返回元素 1 的 索引。我们可以得出以下结论。 ‧ 当 nums = [?, ?, ..., 1] ,即当末尾元素是 1 时,需要完整遍历数组,达到最差时间复杂度 ?(?) 。 ‧ 当 nums = [1, ?, ? 随机打乱数组元素 random.shuffle(nums) return nums def find_one(nums: list[int]) -> int: """ 查找数组 nums 中数字 1 所在索引""" for i in range(len(nums)): 第 2 章 复杂度分析 hello‑algo.com 40 # 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) # 当元素 杂度可以体现算法在随机输入数据下的 运行效率,用 Θ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱 的,因此元素 1 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 ?/2 ,平 均时间复杂度为 Θ(?/2) = Θ(?) 。 但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。0 码力 | 364 页 | 18.42 MB | 1 年前3
Hello 算法 1.2.0 简体中文 C# 版算法的时间效率往往不是固定的,而是与输入数据的分布有关。假设输入一个长度为 ? 的数组 nums ,其中 nums 由从 1 至 ? 的数字组成,每个数字只出现一次;但元素顺序是随机打乱的,任务目标是返回元素 1 的 索引。我们可以得出以下结论。 ‧ 当 nums = [?, ?, ..., 1] ,即当末尾元素是 1 时,需要完整遍历数组,达到最差时间复杂度 ?(?) 。 ‧ 当 nums = [1, ?, ? com 41 (nums[i], nums[index]) = (nums[index], nums[i]); } return nums; } /* 查找数组 nums 中数字 1 所在索引 */ int FindOne(int[] nums) { for (int i = 0; i < nums.Length; i++) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) 杂度可以体现算法在随机输入数据下的 运行效率,用 Θ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱 的,因此元素 1 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 ?/2 ,平 均时间复杂度为 Θ(?/2) = Θ(?) 。 但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。0 码力 | 379 页 | 18.48 MB | 10 月前3
共 319 条
- 1
- 2
- 3
- 4
- 5
- 6
- 32













