积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1465)综合其他(491)Python(465)数据库(325)Java(323)Weblate(302)云计算&大数据(293)Spring(252)C++(148)系统运维(117)

语言

全部英语(1979)中文(简体)(594)中文(繁体)(35)日语(23)法语(18)俄语(18)德语(16)西班牙语(16)韩语(15)

格式

全部PDF文档 PDF(2128)其他文档 其他(596)PPT文档 PPT(11)DOC文档 DOC(7)
 
本次搜索耗时 0.071 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 综合其他
  • Python
  • 数据库
  • Java
  • Weblate
  • 云计算&大数据
  • Spring
  • C++
  • 系统运维
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 法语
  • 俄语
  • 德语
  • 西班牙语
  • 韩语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • word文档 A Seat at the Table - IT Leadership in the Age of Agility

    A Seat at the Table – IT Leadership in the Age of Agility – Part 3 By Mark Schwartz “Courage, I say, is the value most needed by Agile IT leaders.” – Mark Schwartz Last Time in Part 2 Enterprise in no sense a “final” operating capability. Quality It is difficult for IT to gain a seat at the table when IT is always failing, but on the other hand, an IT leader who is reacting to statistical noise—failures and ties.The CIO’s Place at the Table IT leadership runs the business along with the others who run the business. The seat at the table is earned by being at the table. The role of senior IT leadership
    0 码力 | 7 页 | 387.48 KB | 6 月前
    3
  • word文档 A Seat at the Table - IT Leadership in the Age of Agility

    A Seat at the Table – IT Leadership in the Age of Agility By Mark Schwartz “Mark Schwartz is a rare combination: a deep thinker who has also applied lean, Agile, and DevOps principles at the highest adapt, feedback-and-vision-oriented approach because of its complexity. A Nimble Approach to The Table Agile in One Paragraph: Agile thinking simply says that we should empower small teams to inspect adopting an intelligent attitude toward risk. Quality: It is difficult for IT to gain a seat at the table when IT is always failing, but on the other hand, an IT leader who is reacting to statistical noise—failures
    0 码力 | 4 页 | 379.23 KB | 6 月前
    3
  • word文档 A Seat at the Table: IT Leadership in the Age of Agility - Part 2

    A Seat at the Table – IT Leadership in the Age of Agility – Part 2 By Mark Schwartz “To the talented and hard-working government employees, so resilient in the face of impediments, criticism, and abuse sort of Star Chamber—a dimly lit group of serious, hooded faces (“decision makers”) seated around a table, passing judgment on each “formal proposal” presented to them. That last piece of Hunter and Westerman’s adopting an intelligent attitude toward risk. Quality: It is difficult for IT to gain a seat at the table when IT is always failing, but on the other hand, an IT leader who is reacting to statistical noise—failures
    0 码力 | 7 页 | 387.61 KB | 6 月前
    3
  • epub文档 百度超级链 XuperChain stable 中文文档

    Transactions of the block, only txid stored on kv, the detail information 33 // stored in another table 34 // 交易内容 35 repeated Transaction transactions = 11; 36 // The transaction count of the 转换后的c代码最终会编译成一个动态链接库来给XVM运行时来使用,在每个 生成的动态链接库里面都有如下初始化函数。 这个初始化函数会自动对wasm 里面的各个模块进行初始化,包括全局变量、内存、table、外部符号解析等。 1 typedef struct { 2 void* user_ctx; 3 wasm_rt_gas_t gas; 4 u32 g0; 5 t)); 11 (h->user_ctx) = user_ctx; 12 init_globals(h); 13 init_memory(h); 14 init_table(h); 15 return h; 16 } 3.4. 语言运行环境 3.4.1. c++运行环境 c++因为没有runtime,因此运行环境相对比较简单,只需要设置基础的堆栈分 布
    0 码力 | 325 页 | 26.31 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    such that similar inputs have similar representations. We will call this representation an Embedding. An embedding is a vector of features that represent aspects of an input numerically. It must fulfill the given animal. In Table 4-1 we manually assigned values for the cute and dangerous features for six animals2, and we are calling the tuple of these two features an embedding, where the two features embeddings. Animal Embedding (cute, dangerous) dog (0.85, 0.05) cat (0.95, 0.05) snake (0.01, 0.9) bear (0.5, 0.95) raccoon (0.5, 0.5) mouse (0.01, 0.2) Table 4-1: A table consisting of embeddings
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Go 101 (Golang 101) v1.21.0

    §22. Methods §23. Interfaces - value boxes used to do reflection and polymorphism. §24. Type Embedding - type extension in the Go way. §25. Type-Unsafe Pointers §26. Generics - use and read composite related confusions. 5. Clarifies several ambiguities which exist in the Go specification, such as embedding rules, promoted method value evaluation, and panic/recover mechanism. 6. Makes several summary reflection through interfaces. pointers. function closures. methods. deferred function calls. type embedding. type deduction. memory safety. automatic garbage collection. great cross-platform compatibility
    0 码力 | 630 页 | 3.77 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    针对推荐特点的深度优化,达到业界先 进⽔平 推荐系统的核⼼特点 � Feature 1(基本特点) 1.1 User与推荐系统交互,7*24⼩时 流式学习 1.2 Item和User新增,离开/遗忘, Embedding空间动态变化。 短期命中的⾼频key随时间缓慢变化 少量的⾼频key占据了主要访问需求 ⼀段时间样 本命中的 unique key ID/tag/交叉特征 (全量为:亿,千亿) ⼩特征 User Item特征 ⽤户反馈 Item推荐 Embedding参数 本⼩时访问过的key 上⼩时访问过的key 访 问 百 分 ⽐ 时间(⼩ 时) � Feature 2(数据的时空特点) 2.1 短时间内只有部分item和user被 命中,只有部分参数被⽤到 � Feature 3(机器学习的特点) Embedding以稀疏的⽅式表达信息 ⼤规模推荐模型深度学习系统基本解决维度 参数更新 查询Sparse Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 查询Sparse Table 查询Dense Tensor 更新参数 � 常规训练流⽔线 样本读取 样本解析 参数拉取 参数更新 查询Sparse Table 查询Dense Tensor
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • mobi文档 Go 101 (Golang 101) v1.21.0

    synchronizations. §22. Methods §23. Interfaces - value boxes used to do reflection and polymorphism. §24. Type Embedding - type extension in the Go way. §25. Type-Unsafe Pointers §26. Generics - use and read composite related confusions. 5. Clarifies several ambiguities which exist in the Go specification, such as embedding rules, promoted method value evaluation, and panic/recover mechanism. 6. Makes several summary reflection through interfaces. pointers. function closures. methods. deferred function calls. type embedding. type deduction. memory safety. automatic garbage collection. great cross-platform compatibility
    0 码力 | 610 页 | 945.17 KB | 1 年前
    3
  • epub文档 Go 101 (Golang 101) v1.21.0

    §22. Methods §23. Interfaces - value boxes used to do reflection and polymorphism. §24. Type Embedding - type extension in the Go way. §25. Type-Unsafe Pointers §26. Generics - use and read composite related confusions. 5. Clarifies several ambiguities which exist in the Go specification, such as embedding rules, promoted method value evaluation, and panic/recover mechanism. 6. Makes several summary reflection through interfaces. pointers. function closures. methods. deferred function calls. type embedding. type deduction. memory safety. automatic garbage collection. great cross-platform compatibility
    0 码力 | 880 页 | 833.34 KB | 1 年前
    3
  • pdf文档 2020美团技术年货 算法篇

    Self-Attention 的集成, h 代表头的个数。其 中 Self-Attention 的计算公式如下: 其中,Q 代表查询,K 代表键,V 代表数值。 在我们的应用实践中,原始输入是一系列 Embedding 向量构成的矩阵 E ,矩阵 E 首先通过线性投影: 得到三个矩阵: 然后将投影后的矩阵输入到 Multi-Head Attention。计算公式如下: Point-wise Feed-Forward 保留将稠密特征和离散特征的 Embedding 送入到 MLP 网络,以隐式的方式 学习其非线性表达。 ● Transformer Layer 部分,不是送入所有特征的 Embedding,而是基于人工经 验选择了部分特征的 Embedding,第一点是因为美团搜索场景特征的维度高, 全输入进去会提高模型的复杂度,导致训练和预测都很慢;第二点是,所有特征 的 Embedding 维度不完全相同,也不适合一起输入到 Transformer Layer 。 Embedding Layer 部分:众所周知在 CTR 预估中,除了大规模稀疏 ID 特征,稠 密类型的统计特征也是非常有用的特征,所以这部分将所有的稠密特征和稀疏 ID 特 征都转换成 Embedding 表示。 Transformer 部分:针对用户行为序列、商户 、品类 、地理位置等 Embedding 表示,使用 Transformer Layer
    0 码力 | 317 页 | 16.57 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
SeatattheTableITLeadershipinAgeofAgilityPart百度超级XuperChaintable中文文文文档中文文档EfficientDeepLearningBookEDLChapterArchitecturesGo101Golangv121.0推荐模型基础特点大规规模大规模深度学习系统设计2020美团技术年货算法
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩