Oracle 和 MySQL 性能优化感悟
移动APP性能监测实践(iOS篇) 杨凯 杨凯 杨凯@听云 iOS研发工程师 yangkai@tingyun.com 关于APM APM的终极使命 APM价值的直接体现 监测的根本在数据获取 监控 技术 NSURLProtocol Method swizzling Isa swizzling Isa swizzling+NSProxy Others NSURLProtocol0 码力 | 19 页 | 3.82 MB | 1 年前3Go性能优化概览-曹春晖
业务性能优化概览 By Xargin 《Go 语⾔⾼级编程》合著者 Go contributor ⽬ 录 优化的前置知识 01 ⽣产环境的优化 02 Continuous profiling 03 优化的前置知识 第⼀部分 Latency numbers every programmer should know https://colin-scott.github.io/p 了解常⻅的⽹络协议(http、pb) https://github.com/bagder/http2-explained https://github.com/bagder/http3-explained 逃逸分析 ⽤户声明的对象,被放在栈上还是堆上, 是由编译器的 escape analysis 来决定的 ⽅法论 内存使⽤优化 CPU 使⽤优化 阻塞优化 GC 优化 标准库优化 runtime 优化 实例分析,TLS 的 write buffer 瓶颈优化过程 https://github.com/golang/go/blob/master/src/crypto/tls/conn.go#L930 内存占⽤过⾼-堆分配导致内存过⾼ https://github.com/golang/go/pull/42036#issuecomment-715046540 怎么样说服官⽅接受性能优化的 PR0 码力 | 40 页 | 8.69 MB | 1 年前3Rust API可靠性分析与验证
Conf 2021 – 2022, Online, China 姜剑峰 Rust API可靠性分析与验证 Rust China Conf 2021 – 2022, Online, China 主题内容 • Rust第三方库API可靠性现状 • 现用方法的局限性 • 基于程序合成+模糊测试的可靠性分析方法 Rust China Conf 2021 – 2022, Online, China 本(2019)硕(2022)毕业于复旦大学 • 目前在蚂蚁集团安全计算部门开发应用于机密计算的Rust系统软件 • 研究生期间主要从事Rust测试与验证工具的研究,本人所在的是国内最早 开展Rust程序分析相关研究的实验室(https://artisan-lab.github.io) • 我们关于Rust库模糊测试的论文 RULF: Rust Library Fuzzing via API Dependency China Conf 2021 – 2022, Online, China 现有的可靠性分析方法及其局限性 模糊测试(afl.rs, libfuzzer):分支覆盖率;用例程序的构造 符号执行(klee, angr):路径爆炸;求解困难 静态分析(MirChecker, Rudra, SafeDrop):分析特定问题;假阳性 形式化验证(RustBelt):无法方便的验证第三方库 其他工具(Miri等)…0 码力 | 13 页 | 1.68 MB | 1 年前3DataEase 嵌入式分析 2024年3月
2024 年 3 月 DataEase 嵌入式分析 DataEase 可以帮助用户快速分析业务数据并洞察其趋势,从而实现业 务的改进与优化。DataEase 支持丰富的数据源连接,能够通过拖拉 拽的方式快速制作图表,并且可以方便地与他人进行分享。 人 人 可 用 的 开源数据可视化分析工具 什么是 DataEase ? DataEase v2 的不同版本对比 版本类型 社区版 嵌入式版 嵌入式版 企业版 目标群体 任何用户 ISV / 系统集成商 最终客户 产品功能 社区版功能 社区版功能 + X-Pack 部分功能 (含嵌入式分析能力) 注:单数据集限制 10 万行数据。 社区版功能 + X-Pack 所有功能 (含嵌入式分析能力) 注:数据集无行数限制。 销售方式 社区分发 免费使用 线上销售 / 线下推广 标准化合同模板 线下推广 线下商务流程 授权方式 原厂企业级技术支持服务 (基础级,5×8;增强级,7×24) 1 2 嵌入式分析可以给 ISV 带来哪些价值? 3 DataEase 嵌入式分析的方案 4 DataEase 嵌入式分析的优势 在线体验 & 嵌入流程介绍 什么是嵌入式分析 ? 嵌入式分析是可以嵌入在商业应用程序中,为应用软件提供或者增强分析功能的专业 BI 软件。 Embedding analytics and data0 码力 | 29 页 | 7.29 MB | 1 年前3APISEVEN 和Kong EE 的性能评测
APISEVEN和KongEE的性能评测--GigaOm ⾼性能API管理测试 产品评估:API7和Kong企业版 1-摘要3 2-云上的API管理5 API76 图1.API7技术架构7 Kong企业版7 3-GigaOmAPI负载测试设置9 API压⼒测试9 测试环境10 单节点10 环境清单10 软件版本信息11 应⽤程序开发,且能降低计算成本的开销。 更重要的是,许多组织也依赖API和微服务来实现⾼性能和可⽤性。在本⽂中,我们将“⾼性能”定义 为每秒负载超过1000个交易且在整个API环境中最⼤延迟⼩于30毫秒。对公司⽽⾔,对性能的需求和 对管理的需求⼀样,因为公司依靠API交易速率来跟上业务发展速度。 API管理解决⽅案不能成为性能瓶颈。许多公司都在寻找跨多个API端点的负载均衡和⾼交易量吞吐的 解决⽅案 解决⽅案。如果业务每秒有1000个交易,⼀个⽉内就会有30亿次API调⽤。拥有⼤流量的公司通常每 ⽉API调⽤次数超过100亿次。因此,在选择API管理解决⽅案时,性能是⼀个关键因素。 在本⽂中,我们展⽰了使⽤2个全⽣命周期API管理平台完成的性能测试结果:API7和Kong企业版 (KongEE)。 在我们的单节点设置中,API7所有的压⼒测试结果都优于KongEE。在每秒10,000个请求的情况下,0 码力 | 14 页 | 1.11 MB | 1 年前34 Python机器学习性能优化
Python机器学习性能优化 以BERT服务为例例,从1到1000 刘欣 ⽬目录 CONTENTS 1. 优化的哲学 2. 了解你的资源 3. 定位性能瓶颈 4. 动⼿优化 1. 优化的哲学 "There ain't no such thing as a free lunch" Ahmdal’s Law • 系统整体的优化,取决于热点部分的占⽐比和该部分的加速程度 No Free Flask Production Server • gunicorn 多进程解决多核利利⽤用率问题 • gevent 协程替代多线程⽹网络模型 • 更更⾼高效的序列列化lib 3 定位性能瓶颈 Profile before Optimizing Python Profilers • time.time() • cProfile • line profiler • pyflame 放个截图 cProfile • 倒序打印 & graph pyflame • 插桩 or 采样 • 放个flamegraph • 开源地址 wrk • 制造压⼒力力 • 挖掘整体性能瓶颈 • 实现⾮非常精妙的压⼒力力⼯工具,强烈烈安利利(要不不要写个py binding) 4 动⼿优化 多线程服务器的问题 • 每个请求单独进GPU,利利⽤用率不不⾼高 • ⼤大量量请求并⾏行行,CUDA会爆0 码力 | 38 页 | 2.25 MB | 1 年前3基于静态分析的Rust内存安全缺陷检测研究
基于静态分析的Rust内存安全缺陷检测研究 报告人:徐辉 报告日期:2022.11.25 复旦大学 大纲 一、问题背景 二、Rust指针缺陷检测方法 三、实验结论 四、论文发表心得 大纲 一、问题背景 二、Rust指针缺陷检测方法 三、实验结论 四、论文发表心得 Rust语言 ❑ 系统级安全编程语言 ▪ 内存安全 ▪ 并发安全 ▪ 效率 2006年 2011年 手动释放内存或调用析构函数 ▪ 函数返回时发生的自动析构或内存释放 ❑ Rust设计的目标之一是编译时检查指针别名(共享可变引用) ▪ 但一般意义上的指针分析是NP-hard问题 ▪ 智能指针可行,但作为运行时方案,效率低 ▪ Rust在语法设计中引入所有权机制,简化指针分析问题 Rust所有权模型 => XOR Mutability ❑ 一个对象有且只有一个所有者 ❑ 所有权可以转移给其它变量 ▪ 用完不用还 bob自动归还Box对象, alice恢复修改权 如果需要违背XOR Mutability怎么办? ❑ 以双向链表为例,中间节点被前后两个节点访用 ❑ Rust为了提升可用性所做的妥协 ▪ 智能指针(性能损失) ▪ 允许使用裸指针(unsafe模式) • 逃逸编译器的借用检查 => 指针别名 next prev next prev next prev struct List{ val:0 码力 | 28 页 | 1.55 MB | 1 年前3202306 ⼈⼈可⽤的开源数据可视化分析⼯具
2023 年 6 ⽉ ⼈⼈可⽤的开源数据可视化分析⼯具 数据可视化对企业的价值 DataEase 开源项⽬介绍 DataEase 模板市场 DataEase 企业版介绍 1 2 3 4 可视化 原始数据 数据价值 数据孤岛 管理混乱 缺失分析 全业务场景 ⽤户⾏为管理 数据驾驶舱 数据→信息→价值 可以为企业运营 带来直接收益 数据可视化对企业的价值 能够快速、⾼效地 能够快速、⾼效地 提供体验良好的数 据展现⼿段,通过 分析数据资产的质 量,助⼒企业做出 更加准确的业务策 略。 前端业务⼈员 数据管理⼈员 企业管理者 IT 建设⼈员 提供多种数据使⽤ 模式,提供更为丰 富、安全的数据管 理⼿段,有助于企 业内部进⾏更为⼴ 泛的数据整合与分 析,并由此创造数 据价值。 能够合理评估、规 范 和 洞 察 企 业 信 息,洞悉企业发展 趋 势 , 在 有 效 管 理 IT 投资和降本 功能丰富 3 稳定性、性能 4 数据分析能⼒ 5 采购成本 6 服务⽀持 7 ⼚商实⼒ ⼈⼈可⽤ 企业选择数据可视化⼯具的考量 数据可视化对企业的价值 DataEase 开源项⽬介绍 DataEase 模板市场 DataEase 企业版介绍 1 2 3 4 DataEase可以帮助⽤户快速分析业务数据并洞察其趋势,为企业的业0 码力 | 27 页 | 3.61 MB | 1 年前3Chatbots 中对话式交互系统的分析与应用
对话交互的价值:在哪儿/在那儿 • 行业早期,价值待验证 • “能帮我把转化率提升50%吗?” • 需求界定师:砍掉不合实际的需求 • “能不能把我的销售、客服全换成机器人?” • “能不能通过分析上课视频,来解答学生的问题?” • 对话设计师:怎么更优雅地达到目的 • “公交车上你会给老人让座吗?” • 做能做且有价值的事,努力把不能做的事变成可做的 Thanks 爱因互动,欢迎你的加入0 码力 | 39 页 | 2.24 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming
性能优化 之 无分支编程 Branchless Programming by 彭于斌( @archibate ) 两种代码写法:分支 vs 三目运算符 两种使用方式:排序 vs 不排序 测试结果(均为 gcc -O3 ) 测试结果可视化 图表比较:分支 vs 无分支 分支 无分支 0 0.01 0.02 0.03 耗时(越低越好) 乱序 有序 • 传统的分支方法实现的 uppercase ,对于 排序过的数据明显比乱序时高效。 • 无分支的方法对于乱序和有序的数据一样 高效,性能吊打了传统的分支方法。 • 对于传统分支的做法,为什么排序了的更 高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 • 为了高效, CPU 的内部其实是一个流水 、 90% 、 99% 直到有一次, 突然出现了一次分支 B 成功的案例, CPU 瞬间被打脸!不得不浪费 99% 已经填满 A 数 据的流水线清空,重启整个流水线,这就是分支预测失败,他是导致分支性能低下的罪魁祸 首。不过被打了一次脸的 CPU 还不敢相信,觉得这可能只是碰巧,下一次还是会执行分 支 A 的吧,所以他只是把分支 A 的比例下调到 80% ,直到第二次又被打脸,下调到最初 的起点 50%……0 码力 | 47 页 | 8.45 MB | 1 年前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100