机器学习课程-温州大学-13深度学习-Transformer深度学习-Transformer 黄海广 副教授 2 03 Transformer的训练 本章目录 01 Transformer介绍 02 Transformer的工作流程 04 BERT 3 1.Transformer介绍 01 Transformer介绍 03 Transformer的训练 02 Transformer的工作流程 4 1.Transformer介绍 为什么需要用transformer 其实在之前我们使用的是RNN(或者是其的单向或者双向变种LSTM/GRU等) 来 作为编解码器。RNN模块每次只能够吃进一个输入token和前一次的隐藏状态,然 后得到输出。它的时序结构使得这个模型能够得到长距离的依赖关系,但是这也 使得它不能够并行计算,模型效率十分低。 在没有transformer的时候,我们 5 1.Transformer介绍 Seq2Seq任务 Seq2Seq 任务指的是输入和输出都是 序列的任务,输出的长度不确定时采 用的模型,这种情况一般是在机器翻 译的任务中出现,将一句中文翻译成 英文,那么这句英文的长度有可能会 比中文短,也有可能会比中文长,所 以输出的长度就不确定了。 上图,输入的中文长度为4,输出的英文长度为2 6 1.Transformer介绍 Encoder-Decoder模型0 码力 | 60 页 | 3.51 MB | 1 年前3
机器学习课程-温州大学-14深度学习-Vision Transformer (ViT)1 2023年06月 深度学习-Vision Transformer (ViT) 黄海广 副教授 2 03 模型训练策略 本章目录 01 背景知识 02 模型介绍 04 模型的缺点与改进 05 模型的代码实现 3 1.背景知识 03 模型训练策略 01 背景知识 02 模型介绍 04 模型的缺点与改进 05 all you need的文章,开创性地提出了 在序列转录领域,完全抛弃 CNN和RNN,只依赖Attention-注 意力结构的简单的网络架构, 名为Transformer;论文实现的 任务是机器翻译。 Transformer结构 Multi-Head Attention Add & Norm Input Embedding Output Embedding Feed Inputs Outputs (shifted right) Positional Encoding Positional Encoding 1.背景知识 6 为什么需要用transformer Transformer原本是用来做 NLP的工作的,所以ViT的 首要任务是将图转换成词 的结构,这里采取的方法 是如上图左下角所示,将 图片分割成小块,每个小 块就相当于句子里的一个 词。这里把每个小块称作0 码力 | 34 页 | 2.78 MB | 1 年前3
阿里云上深度学习建模实践-程孟力Normalization: bn, gn, ln? 激活函数: relu, leaky_relu, swish ? Backbone: resnet, hrnet, mobilenet, transformer? 多任务模型: share-bottom, mmoe, ple? 特征选择/生成: Age, sex, comment, click… 解决方案: 超参搜索 效果提升 模型理解 Blade 推荐模型优化: 千亿特征 3. 工程优化 RingAllReduce + 层级级联 EasyVision 多机多卡性能对比 工程优化: 数据并行 M6模型 Transformer模型: RapidFormer 人脸分类模型: 超大softmax 3D卷积模型 M6模型 RapidFormer性能 工程优化: 模型并行(Whale) FP16 / Op融合(Fusion Stitch) MILR: Blade Disc 工程优化: Blade模型推理 Dynamic Shape Compiler for Machine Learning Workloads EmbeddingVariable [No Hash Conflict] 特征准入/淘汰 Adaptive Embedding 训练: 推理: Ring All-reduc同步训练0 码力 | 40 页 | 8.51 MB | 1 年前3
2022年美团技术年货 合辑weixin.qq.com/s/RwWuZBSaoVXVmZpnyg7FHg 128 > 2022年美团技术年货 [5] https://tech.meituan.com/2020/04/16/transformer-in-meituan.html. [6] https://tech.meituan.com/2021/07/08/multi-business-modeling.html. [7] Tang 度神经网络来捕获来自不同领域的特征之间的交互,以便工程师可以摆脱枯燥的特征 工程工作。最近,我们称之为用户兴趣模型的一系列工作,专注于从历史行为中学习 潜在用户兴趣的表示,使用不同的神经网络架构,如 CNN、RNN、Transformer 和 Capsule 等。DIN1 强调用户兴趣是多样的,并引入了注意力机制来捕捉用户对不同 目标商品的不同兴趣。DIEN2 指出,历史行为之间的时间关系对于建模用户的兴趣漂 移很重要,并设计了一个带有辅助损失的 定离线训练时长与在线 Latency 约束下,选择了 4Experts MMOE 版本作为新的基 线模型,并做详细的探索,进行较为细致的优化,包括: ● 引 入 残 差 连 接: 受 Switch Transformer12 启 发, 引 入 embedding layer 与 Experts 输 出 层 之 间 的 残 差 连 接, 用 来 缓 解 梯 度 消 失, 离 线 CXR GAUC+0.1pp。0 码力 | 1356 页 | 45.90 MB | 1 年前3
Moonshot AI 介绍cn/),发布时间2023年11⽉2⽇ • 欢迎关注公众号,了解更多动态 公司亮点 1.团队拥有世界级的⼈才密度: a. 创始⼈杨植麟是中国35岁以下NLP领域引⽤最⾼的研究者,Transformer-XL和XLNet两篇重要 论⽂的第⼀作者;两位联合创始⼈周昕宇和吴育昕都有10000+的GoogleScholar引⽤。 b. 团队成员囊括NLP,CV,RL(强化学习) LLaMa和GooglePALM等⼤多数 主流模型的重要组成部分;发明了groupnormalization,是StableDiffusion等AI模型成功 的关键组件;发明了Transformer-XL,是历史上第⼀个在词级别和字级别都全⾯超越RNN 的注意⼒语⾔模型,解决了语⾔建模上下⽂⻓度的关键问题,定义了语⾔建模的新标准;曾 与DeepMind和CMU合作研究,⾸次实现⼩样本性能逼近全监督学习的⾼效对⻬⽅法。 能拍板执⾏。⼀个具体的例⼦是,⽉之暗⾯希望⽐ OpenAI更关⼼⽤⼾,原因是杨植麟判断⽤⼾数据的scaleup的效果最终会超越basemodel⾃⾝。 杨植麟对于⽤transformer这个概率模型的思想基础⾛向AGI也很有信⼼,⽤他的话说“如果你有10 亿的contextlength,今天看到的问题都不是问题”。 AGI:AI本质就是⼀堆scalinglaw0 码力 | 74 页 | 1.64 MB | 1 年前3
机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入预训练模型的发展 31 预训练模型的发展 32 Transformer 资料来源:《Attention Is All You Need》,Ashish Vaswani et.al 2017 ◼ Transformer摆脱了人工标注数据集的缺陷,模型在质量上更优、 更易于并行化,所需训练时间明显更少 ◼ Transformer通过成功地将其应用于具有大量和有限训练数据的分 析,可以很好地推广到其他任务 Need》 中提出了一种新的简单架构——Transformer,它完全基于注意力机制, 完全不用重复和卷积,因而这些模型在质量上更优,同时更易于并行化,并 且需要的训练时间明显更少。 ✓ Transformer出现以后,迅速取代了RNN系列变种,跻身主流模型架构基 础。(RNN缺陷正在于流水线式的顺序计算) 图:Transformer模型架构 33 首先通过词嵌入(Word Embedding)将字、词、 增强数据间的结构信息。其次通过Transformer等模式结合 上下文进行推导,生成最终文本。 ◼ Transformer架构可分为自回归系列(例如GPT-3,偏好生成性任务)、双向Transformer+Mask的自编码系列(例如BERT, 偏好自然语言理解)、Encoder-decoder架构(例如T5,使用双向/单向attention,偏好条件文本生成) 图:Transformer典型技术场景下的原理介绍如下所述0 码力 | 44 页 | 2.36 MB | 1 年前3
DeepSeek图解10页PDF. . . . . . . . . 5 2.1 LLM 基础概念 . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Transformer 基础架构 . . . . . . . . . . . . . . . . . . . . . . 6 2.3 LLM 基本训练方法 . . . . . . . . . . . . . . billion,意思是十亿,7b 就是 70 亿,8b 就 是 80 亿,70 亿、80 亿是指大模型的神经元参数(权重参数 weight+bias)的 总量。目前大模型都是基于 Transformer 架构,并且是很多层的 Transformer 结构,最后还有全连接层等,所有参数加起来 70 亿,80 亿,还有的上千亿。 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 AI,欢迎关注获取更多原创教程。资 元化,模型最后就会越通用;即使包括噪声数据,模型仍能通过扩展规律提 取出通用的知识。而 Transformer 这种架构正好完美做到了 Scaling Laws, Transformer 就是自然语言处理领域实现扩展规律的最好的网络结构。 2.2 Transformer 基础架构 LLM 依赖于 2017 年 Google 提出的 Transformer 模型,该架构相比传统的 RNN(递归神经网络)和 LSTM(长短时记忆网络)具有更高的训练效率和0 码力 | 11 页 | 2.64 MB | 8 月前3
2024 中国开源开发者报告Maas(Model as a service)、Aaas(Agent as a service)这样的平台,如玩乐高一般搭建自己的 AI 云原生应用。 2. 算力层深挖定制化、低能耗的可能性,但固化 transformer 可能不是最优解 虽说智能体不需要太大的模型,但其运营成本(模型推理计算成本)仍然较高。在短时间内, 算力、能源仍然会是大模型领域令人头疼的高墙。 根据报告【1】,能源消耗将会是 2030 型底层技术的特性,产出针对性的芯片,尤其是加速运算和降低能耗。这是未来 AI 芯片领域的 最优竞争力。 那么,把 transformer“焊死”到板子上就是最佳方案吗?我知道你很急,但你先别急。大 模型底层框架还存在底层路线之争。 32 / 111 我们知道,Transformer 架构呈现了 O(n²)的理论计算复杂度,这里的 n 指的是大模型输入 序列的 token 数量,但其前任语言模型担当 最近,以 Mamba、RWKV 为代表的类 RNN 结构死灰复燃,公开挑战 transformer 地位。 更有最新研究【13】从理论上表明,RNN 对比 Transformer 的表达力,只差一个 in-context-retrieval。 在这个方向的持续投入下,我们很可能会迎接一个介于 RNN 和 Transformer 之间的“新王”。 因此,算力层短时间内的主题仍然是“半通用化”“高算力”“低能耗”。0 码力 | 111 页 | 11.44 MB | 8 月前3
动手学深度学习 v2.0位置编码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 10.7 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 10.7 多 层、残差连接、不同类型的正则化。然而,由于序列的长距离依赖性,训练长短期记忆网络和其他序列模型 (例如门控循环单元)的成本是相当高的。在后面的内容中,我们将讲述更高级的替代模型,如Transformer。 小结 • 长短期记忆网络有三种类型的门:输入门、遗忘门和输出门。 • 长短期记忆网络的隐藏层输出包括“隐状态”和“记忆元”。只有隐状态会传递到输出层,而记忆元完 全属于内部信息。 力是深度学习中的具有突破性价值的注意力模型,它 双向对齐并且可以微分。 最后将描述仅仅基于注意力机制的Transformer架构,该架构中使用了多头注意力(multi‐head attention)和 自注意力(self‐attention)。自2017年横空出世,Transformer一直都普遍存在于现代的深度学习应用中,例 如语言、视觉、语音和强化学习领域。 381 10.1 注意力提示0 码力 | 797 页 | 29.45 MB | 1 年前3
vmware组Kubernetes on vSphere Deep Dive KubeCon China VMware SIGcloud provider What is NUMA? How to solve potential issues with CPU and memory intensive workloads Kubernetes default resource management How it works Extending the functionality of Kubernetes cluster have uneven available resources due to node variations or unevenly distributed pre-existing workloads, this might prevent perfectly even spreading of your pods across zones. • The Kubernetes Zones is NUMA? Non Uniform Memory Architecture 12 Why should you care about NUMA? Memory intensive workloads Nearly all database servers (e.g. Oracle, MongoDB), present a workload which will attempt to detect0 码力 | 25 页 | 2.22 MB | 1 年前3
共 360 条
- 1
- 2
- 3
- 4
- 5
- 6
- 36













