MySQL高可用 - 多种方案业界不断讨论的热点问题,其中涉及的东西比较多,可 供选择的方案也相当多,面对这么多的方案,我们应该如何选择适合自己公司的 mysql 高可用方案呢,我觉得首先我们需要了解的自己公司的业务,了解在线系统中那些东西 会影响高可用,以及了解各个高可用方案比较适合哪些场景,通过这些比对应该不难找 出适合自己公司的高可用 mysql 方案。 经常有网友问 mysql 高可用如何实现,希望得到一些能实际使用的可验证的高可用 Lvs+Keepalived+Mysql 单点写入主主同步高可用方案 2.1 方案简介 Lvs+keepalived 作为目前比较流行的高可用解决方案,lvs 提供负载均衡, keepalived 作为故障转移,提高系统的可用性。但是一般的 mysql 高可用为了实现 mysql 数据的一致性,一般都是采用单点写入,本方案采用 keepalived 中的 sorry_server 来实现写入数据库为单点的需求。本方案实现的功能是当网络有问题、 服务停止后,服务器能自动跳转到备用机, 当主服务器服务启动起来后会自动切换回来。 2.2 方案架构图 2.3 方案优缺点 优点: 安装配置简单,实现方便,高可用效率好,可以根据服务与系统的可用性 多方面进行切换。 可以将写 VIP 和读 VIP 分别进行设置,为读写分离做准备。 扩展不是很方便。 可以在后面添加多个从服务器,并做到负载均衡。 缺点:0 码力 | 31 页 | 874.28 KB | 1 年前3
清华大学 DeepSeek 从入门到精通① 解决独居老人安全问题; ② 结合传感器网络和AI预警; ③ 提供三种不同技术路线的原型草图说明。" �实战技巧: 还要不要学提示语? 提示语(Prompt)是用户输入给AI系统的指令或信息,用于 引导AI生成特定的输出或执行特定的任务。简单来说,提示语 就是我们与AI“对话”时所使用的语言,它可以是一个简单的问 题,一段详细的指令,也可以是一个复杂的任务描述。 提示语的基本结构包括指令、上下文和期望 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 开发提示语策略,应对复杂场景 表1-3-2提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 ▪ 要求AI生成有争议、不道德或非法内容。 ▪ 对AI的拒绝或警告感到困惑或不满。 ▪ 尝试绕过AI的安全机制。 ▪ 忽视AI输出可能带来的伦理影响。 应对策略: ▪ 了解界限:熟悉AI系统的基本伦理准则和限制。 ▪ 合法合规:确保你的请求符合法律和道德标准。 ▪ 伦理指南:在提示语中明确包含伦理考虑和指导原则。 ▪ 影响评估:要求AI评估其建议或输出的潜在社会影响。 AI伦理考虑要点0 码力 | 103 页 | 5.40 MB | 9 月前3
基于go和flutter的实时通信/视频直播解决方案 段维伟历时十年成为Web 实时通讯标准 • RTMP 直播协议的低延迟替代方案 WebRTC 可以做什么 02. 副标题 • 用实现网页音/视频通话 • 低延迟直播系统(在线课堂) • 多人视频会议系统 • 高质量SIP/VOIP系统 • 视频监控系统 • 机器学习,视觉计算等 如何使用它 01. 副标题 • 在Web中使用JS API • 基于google libwebrtc实现原生客户端开发 DuBois ION 离子之光 分布式实时通讯系统 https://github.com/pion/ion • 基于pion/webrtc 开发 pion/ion-sfu • 分布式架构 • 基于grpc over NATS mq • 使用redis 存储媒体流全局位置 • 支持业务自定义开发 • 高性能,单个ion-sfu节点 1k 并发仅需 0.5核 ION 架构 多node • ISLB 服务发现,负载均衡,媒体信息全局存储 • Biz 业务接入模块 • SFU 节点 (用于转发webrtc 流,与biz模块配合创建视频会议系 统) • AVP 节点 (用于从SFU节点拉取数据进行数据处理,视频流存 储,音视频混合,CV ,语音识别,图形识别等) • 网关节点与go-sip stack 或rtmp/hls/srt等协议组合成协议网关 • 转换RTC流成直播流推送到CDN0 码力 | 38 页 | 2.22 MB | 1 年前3
RocketMQ v3.2.4 开发指南...................................................................................... 13 6.2 文件系统 .................................................................................................. 的多个关键特性的实现原理,幵对消息中间件遇到的各种问题迕行总结,阐述 RocketMQ 如何解决返些问题。文中主要引用了 JMS 规范不 CORBA Notification 规范,规范为我们设计系统挃明了 方吐,但是仍有丌少问题规范没有提及,对亍消息中间件又至关重要。RocketMQ 幵丌遵循任何规范,但是参考了 各种规范不同类产品的设计思想。 2 产品发展历史 大约经历了三个主要版本迭代 RocketMQ + B2B 个性化需求 为 B2B 应用提供消息服务 3 与业术语 Producer 消息生产者,负责产生消息,一般由业务系统负责产生消息。 Consumer 消息消费者,负责消费消息,一般是后台系统负责异步消费。 Push Consumer Consumer 的一种,应用通常吐 Consumer 对象注册一个 Listener 接口,一旦收到消息,Consumer0 码力 | 52 页 | 1.61 MB | 1 年前3
2022 Apache Ozone 的最近进展和实践分享Ozone的最近进展 • Apache Ozone的实践分享 ⼤数据存储的需求 能否提供⾼并发读取和写⼊ 是否兼容主流API,如HDFS/S3 是否可以扩展⾄数百PB的存储容量,数千个 物理节点以及数⼗亿个对象 扩展性 API 兼容性 性能 是否⽀持存算分离架构同时也可以兼容存算耦合 架构 应⽤对接 安全 加密 HDFS现有的⼀些解决⽅案 Namenode Federation Federation Router Based Federation 是否需要⼀个新的⼤数据存储? 现有的对象存储⽅案 ⽆法很好的横向扩展 HDFS的扩展性 达到了上限 ⽆法接受私有化 的数据存储系统 公有云的对象存储服务 ⽆法在线下部署 ⽬录 • Apache Hadoop HDFS⾯临的问题 • Apache Ozone介绍 • Apache Ozone适⽤场景 • Apache Ozone的最近进展 只有Admin 可以创建或删除Volumes Buckets 类似与S3 的 Buckets, ⼀个Buckets中可以包含任意多个Key,但不能包含其 他Buckets Keys 类似于⽂件. ⽂件系统的层级关系是通过扁平的KV路径抽象实现的 Apache Ozone – 数据服务的核⼼设计 Apache Ozone – 数据服务的核⼼设计 1. OM – 管理Ozone的Namespace0 码力 | 35 页 | 2.57 MB | 1 年前3
Kubernetes Operator 实践 - MySQL容器化Kubernetes Operator 实践 —— MySQL 容器化 刘林 搜狗资深工程师 关于我 搜狗商业平台研发部 资深开发工程师 l 主要从事商业平台研发工作,在构建高性能、高可用大规模 系统方面有丰富的实践经验 l 目前专注于云计算、DevOps 等相关领域,负责搜狗商业云 平台的设计研发工作 刘林 1. 背景介绍 2. Operator 的基本原理 3. MySQL Operator 故障恢复快 Cluster1 搜狗商业平台业务系统 搜索推广 信息流 品牌 BizNginx (Load Balancer) Kafka Zookeeper etcd AppEngine(Resin/Tomcat…) 统一服 务管理 Kubernetes 模板管理 自动化测试 部署中心 服务发现 灰度发布 监控中心 日志系统 PaaS SaaS 编 译 发 布 授 MySQL 集群高可用 • 支持 MySQL 集群弹性伸缩 • 支持 MySQL 5.5 & 5.7 Master Slave1 Slave2 MySQL 集群:1 主 2 从 MySQL 容器化系统架构 REST CLI Kubernetes Master API Server Scheduler Controller Manager NodeM kubelet kube-proxy0 码力 | 42 页 | 4.77 MB | 1 年前3
Apache Pulsar,云原生时代的消息平台 - 翟佳
要解决的问题 • 企业需求和数据规模 • 多租户 - 百万Topics - 低延时 - 持久化 - 跨地域复制 • 解除存储计算耦合 • 运维痛点:替换机器、服务扩容、数据 rebalance • 减少⽂件系统依赖 • 性能难保障: 持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 streamnative.io Apache 简介 • Pulsar 的云原⽣架构 • 企业级流存储: BookKeeper streamnative.io Pulsar: 云原⽣的架构 —— 分层 + 分⽚ • 存储和计算分离 • 节点对等 • 独⽴扩展 • 灵活扩容 • 快速容错 streamnative.io Broker 容错 ⽆感知容错 零数据catchup streamnative.io Bookie容错 (repeatable read consistency) • ⾼可⽤ • 单节点可以存储很多⽇志 • I/O隔离 Apache BookKeeper: 诞⽣场景 streamnative.io 企业级流存储层: 节点对等的架构 • openLedger(组内节点数⽬, 数据备份数⽬, 等待刷盘节点数⽬) • openLedger(5, 3, 2) streamnative0 码力 | 39 页 | 12.71 MB | 6 月前0.03
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 • 数据报告自动化生成:基于o3mini自动 生成格式化的数据报告,包括图表、表格和文 字说明,帮助管理者快速理解分析结果。 • 数据接口标准化:根据标准格式输出数据, 利用o3mini方便不同系统和平台之间的数据 共享,提升跨机构协作效率。 • 情感分析与数据解读:利用o3mini结合 情感分析,对数据进行深入解读,帮助市场调 研等领域理解消费者情感,优化产品和策略。 • 故事化数据呈现:借助o3mini将数据以 段引入重复检测与优化策略,从源头上降低重复率风险, 所生成的综述普通重复率与AIGC重复率均在5%以下。 无限双语数据导入:支持中文与英文文献的导入,并且 文献数据量没有限制,能够轻松处理中文文献的系统性 梳理,以及国际文献的跨语言分析。 幻觉克服:以现有真实数据库作为支撑,借助由专家设 计撰写的提示词,精准规避AI生成中的幻觉问题。 高规范格式输出:所生成的综述文档格式规范、结构清0 码力 | 85 页 | 8.31 MB | 8 月前3
基于 KUBERNETES 的 容器器 + AI 平台平台 如何助⼒力力企业数字化和智能化转型 xiaoqin@caicloud.io VP of R&D 提纲 构建集群与管理理资源 - 73s 视频演示 多集群和镜像仓库 多租户和旧系统的集成 运⾏行行和构建应⽤用 Rudder - 应⽤用编排技术框架 Cyclone - 持续集成与交付引擎 运⾏行行 AI 应⽤用(机器器学习) - 58s 视频演示 Kubeflow • 容错性与混合云 • 功能多样性与上线流程 • 如何实现 • K8s - 单『控制集群』, 多『⽤用户集群』 • 镜像仓库 - 单『默认仓 库』,多仓库集成 管理理集群和节点 • 技术概览 • cloud provider • custom resource • ansible 管理理镜像仓库 • Cargo (内部项⽬目)- ⽣生产级镜像仓库解决⽅方案,基于0 码力 | 19 页 | 3.55 MB | 1 年前3
Ubuntu 桌面培训 2010. . . . . . . . . . . . . . . . . . . . . . . . . . 245 V.III.II 在 Ubuntu 中玩 Microsoft Windows 操作系统上的 游戏 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 IX.II 系统文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 X.III.I 在启动时自动运行系统命令 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 X.III.II 更改引导时的默认操作系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4780 码力 | 540 页 | 26.26 MB | 1 年前3
共 17 条
- 1
- 2













