Ubuntu 桌面培训 2010(bfsugxy@gmail.com) 版权 © 2010 Hunt Xu (mhuntxu@gmail.com) 版权 © 2010 JimHu (jimhuyiwei@gmail.com) 欢迎访问本课程网站:http://people.ubuntu.com/˜happyaron/udc-cn 生成时间:20100725T1630 版本:Daily 本课程由 Canonical 有限公司和 添加语言支持和更改默认语言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 II.III 创建一个用户账户和快速切换用户 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 II.IV 添加/删除应用程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 II.13 快速用户切换 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 540 页 | 26.26 MB | 1 年前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单院双聘教授 沈阳团队博士后 何静 能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 小型化设计:轻量级模型, 适合资源有限的环境。 快速响应:优化推理速度, 适合实时交互场景。 通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 2、撰写python脚本; ,无法作为决策制定、质量评估或产品验证的最终依据。 文件数据读取 1、读取文件; 2、根据指定内容整理成表格。 任务 Open AI o3mini 暂不支持附件上传,响应速度 快,能够快速读取粘贴数据, 输出结果格式工整、简洁。 DeepSeek R1 能够详细全面地提取文件中的 数据,并整理成可视化数据表 格,逻辑性强、指标清晰。 所上传的“2025春运数据(1月14-2月8日)0 码力 | 85 页 | 8.31 MB | 8 月前3
谈谈MYSQL那点事少碎片、支持大文件、能够进行索引压缩 少碎片、支持大文件、能够进行索引压缩 • 二进制层次的文件可以移植 二进制层次的文件可以移植 (Linux (Linux Windows) Windows) • 访问速度飞快,是所有 访问速度飞快,是所有 MySQL MySQL 文件引擎中速度最快的 文件引擎中速度最快的 • 不支持一些数据库特性,比如 事务、外键约束等 不支持一些数据库特性,比如 事务、外键约束等 • 事务、外键约束等数据库特性 • Rows level lock , Rows level lock , 读写性能都非常优秀 读写性能都非常优秀 • 能够承载大数据量的存储和访问 能够承载大数据量的存储和访问 • 拥有自己独立的缓冲池,能够缓存数据和索引 拥有自己独立的缓冲池,能够缓存数据和索引 MySQL 架构设计—应用架构 强一致性 对读一致性的权衡,如果是对读写实时性要求非常高的话, 设计合理架构,如果 设计合理架构,如果 MySQL MySQL 访问频繁,考虑 访问频繁,考虑 Master/Slave Master/Slave 读写分离;数据库分表、数据库切片(分 读写分离;数据库分表、数据库切片(分 布式),也考虑使用相应缓存服务帮助 布式),也考虑使用相应缓存服务帮助 MySQL MySQL 缓解访问 缓解访问 压力 压力 系统优化 系统优化 配置合理的 配置合理的0 码力 | 38 页 | 2.04 MB | 1 年前3
2022 Apache Ozone 的最近进展和实践分享– 负责存储和汇报Storage Containers 5. Storage Containers – Ozone的存储单元,内置有RocksDB 数据库 Apache Ozone – 数据访问的API ofs hdfs dfs -mkdir /volume1/bucket1 o3fs hdfs dfs -ls o3fs://bucket.volume.om-host.com:5678/key 降低控制平⾯的节点数和服务依赖 业务价值 • 降低⼤规模集群的运维难度 • 可通过HDFS API和Distcp进⾏快速迁移 • 降低系统恢复时间 • 尽可能的减少NN Java GC带来的⽆ 响应问题 运维价值 Apache Ozone – 使⽤场景 #2 • 可以快速的对接已适配S3 接⼝的应⽤ • 减少数据在多个平台间的迁移 • 使⽤单⼀的API协议来应对混合云架构 业务价值 atelog_sales”) 均衡器Ozone Balancer(HDDS-4656) 时机 ● 新的节点加⼊Ozone集群 ● 删除⼤量数据后 好处 ● 充分利⽤集群资源 ● 均衡集群IO访问 实现 ● 均衡器实现为SCM的⼦功能 ● Container是数据迁移的最⼩单位, 只迁移CLOSE状态的Container ● 客户端发送命令给SCM,SCM负 责执⾏和控制流程 Ozone0 码力 | 35 页 | 2.57 MB | 1 年前3
RocketMQ v3.2.4 开发指南b.com/alibaba/RocketMQ 4 在 RocketMQ 中,所有消息队列都是持丽化,长度无限的数据结构,所谓长度无限是挃队列中的每个存储 单元都是定长,访问其中的存储单元使用 Offset 来访问,offset 为 java long 类型,64 位,理论上在 100 年内丌会溢出,所以讣为是长度无限,另外队列中只保存最近几天的数据,乀前的数据会挄照过期时间来 删除。 Buffer 大小,而丏消息 堆积后,性能下降丌会太大,因为内存中数据多少对亍对外提供的访问能力影响有限。 (2). 消息堆积到持丽化存储系统中,例如 DB,KV 存储,文件记彔形式。 当消息丌能在内存 Cache 命中时,要丌可避免的访问磁盘,会产生大量读 IO,读 IO 的吞吏量直接决定了 消息堆积后的访问能力。 评估消息堆积能力主要有以下四点: (1). 消息能堆积多少条,多少字节?即消息的堆积容量。 项目开源主页:https://github.com/alibaba/RocketMQ 9 (3). 消息堆积后,正常消费的 Consumer 是否会叐影响? (4). 消息堆积后,访问堆积在磁盘的消息时,吞吏量有多大? 4.13 分布式事务 已知的几个分布式事务规范,如 XA,JTA 等。其中 XA 规范被各大数据库厂商广泛支持,如 Oracle,Mysql 等。 其中0 码力 | 52 页 | 1.61 MB | 1 年前3
清华大学 DeepSeek 从入门到精通,主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题。了解它们的差异有助于根据任务需求选择合 适的模型,实现最佳效果。 提示语策略差异 1 2 推理模型 通用模型 • 提示语更简洁,只需明确任务目标和 问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程,0 码力 | 103 页 | 5.40 MB | 9 月前3
MySQL高可用 - 多种方案mysql 之间不使用复制,而是用共享存储或者 DRBD,这样能解决这个问题。 不方便扩展。 可能会发生脑裂问题。 4.3 方案架构图 4.4 适用场景 该方案适合只有两台数据库的情况,访问量不大,不需要实现读写分离的情况。 4.5 方案实战 4.5.1 实战环境介绍 服务器名 IP VIP 系统 Mysql Master 10.1.1.113 10.1.1 优点:安全性高、稳定性高、可用性高,出现故障自动切换, 缺点:只有一台服务器提供服务,成本相对较高。不方便扩展。可能会发生脑裂。 5.3 方案架构图 5.4 方案适用场景 本方案适用于数据库访问量不太大,短期内访问量增长不会太快,对数据库可用性要 求非常高的场景。 5.5 方案实战 5.5.1 实战环境介绍 主机名 Ip 系统 DRBD 磁盘 Heartbeat 版本 dbserver1 立即接管,其他的从服务器能自动切换,不用人工干预。 缺点:至少三个节点,对主机的数量有要求,需要实现读写分离,对程序来说是个 挑战。 6.3 方案架构图 6.4 适用场景 MMM 的适用场景为数据库访问量大,业务增长快,并且能实现读写分离的场景。 6.5 方案实战 6.5.1 实战环境介绍 实战环境服务器列表: 服务器 主机名 ip 地址 Serverid 系统 Mysql0 码力 | 31 页 | 874.28 KB | 1 年前3
使用 Docker 建立 MySQL 集群-d mariadb 第三步 配置一主一从集群 3.1 接下来启动另一个容器作为从数据库,因为镜像不支持在容器内进入 mysql 控制 台,所以依然需要把端口暴露出来以供局域网访问,但主数据库容易可以链接进 来作为一个可访问的主机 master_db。 docker run --name <从数据库名> -e MYSQL_ROOT_PASSWORD=<从数据库 root 密码> --link <主数据库容器名>:master_db0 码力 | 3 页 | 103.32 KB | 1 年前3
基于 KUBERNETES 的 容器器 + AI 平台Rudder 技术架构 ⼀一套基于 k8s 控制器器模式的原⽣生的应⽤用管理理 和编排运⾏行行时 安全性与扩展性:从 k8s 原⽣生模式中获益 状态可读:跟踪所有 k8s 对象状态 版本化:快速从历史版本回滚 构建应⽤用 典型 CI/CD 流程 CAICLOUD/CYCLONE • 开源 • https://github.com/caicloud/cyclone Cyclone0 码力 | 19 页 | 3.55 MB | 1 年前3
Apache Pulsar,云原生时代的消息平台 - 翟佳
企业级流存储: BookKeeper streamnative.io Pulsar: 云原⽣的架构 —— 分层 + 分⽚ • 存储和计算分离 • 节点对等 • 独⽴扩展 • 灵活扩容 • 快速容错 streamnative.io Broker 容错 ⽆感知容错 零数据catchup streamnative.io Bookie容错 应⽤⽆感知 并发可控 数据恢复 streamnative0 码力 | 39 页 | 12.71 MB | 6 月前0.03
共 14 条
- 1
- 2













