C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程
C++11 开始的多线程编 程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业)0 码力 | 79 页 | 14.11 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化
git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) 了单独一个指令。这里尽管不 是地址,但同样可以利用 lea 指令简化生成的代码大小。 eax = rdi + rsi * 8 指针访问对象:线性访问地址 rsi = (int64_t)esi eax = *(int *)(rdi + rsi * 4) 为什么乘以 4 ?因为访问的 对象, int 的大小是 4 。 指针的索引:尽量用 size_t eax = *(int *)(rdi + rsi * 4)0 码力 | 108 页 | 9.47 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理
git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) • 鉴于 C++20 还没有普遍落地(例如 CMake 不支持 C++20 modules )因此我们的课程 基于 C++17 标准,有时会谈到 C++20 作为扩展阅读。 C++ 有哪些面向对象思想? C++ 思想:封装 比如要表达一个数组,需要:起始地址指针 v ,数组大小 nv 将多个逻辑上相关的变量包装成一个类 因此 C++ 的 vector 将他俩打包起来,避免程序员犯错 封装:不变性0 码力 | 96 页 | 16.28 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程
我们不考虑韭菜情怀的话不用管,我们只需要指定架构的版本号是多少就行啦。 • 毕竟一个 72 这样一个单调的整数,听起来没有“高大上地致敬科学家们的名字以彰显其高 尚人文情怀的超绝境界”吸引投资人嘛。 第 1 章:线程与板块 三重尖括号里的数字代表什么意思? • 刚刚说了 CUDA 的核函数调用时需要用 kernel<<<1, 1>>>() 这种奇怪的语法,这里面 的数字代表什么意思呢? • 不妨把 <<<1 时所用 GPU 的线程数量。 • GPU 是为并行而生的,可以开启很大数量的 线程,用于处理大吞吐量的数据。 获取线程编号 • 可以通过 threadIdx.x 获取当前线程的编 号,我们打印一下试试看。 • 这是 CUDA 中的特殊变量之一,只有在 核函数里才可以访问。 • 可以看到线程编号从 0 开始计数,打印出 了 0 , 1 , 2 。这也是我们指定了线程数 量为 3 的缘故。 获取线程数量 • 还可以用 blockDim.x 获取当前线程数量 ,也就是我们在尖括号里指定的 3 。 • 可是为什么叫 blockDim ?我觉得应该叫 threadNum 才比较合理? • 小彭老师也这么觉得,可能是历史遗留下 来的问题,就不追究了。 线程之上:板块 • CUDA 中还有一个比线程更大的概念,那就是板 块( block ),一个板块可以有多个线程组成。这0 码力 | 142 页 | 13.52 MB | 1 年前3Rust 异步并发框架在移动端的应用 - 陈明煜
mobile environment Rust 异步机制 Asynchronous Rust 异步并发框架是许多大型应用、系统具备的底层能力。 区别于多线程编程模型,它带来以下优势: 任务调度颗粒度更小,充分利用线程资源 更可控的线程数 单个任务资源占用:几十 KB -> 几百 Byte 任务切换时间 : 10 微秒 -> 100 纳秒 Rust 语言并没有提供异步并发框架, 并非异步运行时。它通过同步 多线程模型提供了并行迭代器功能, 适用于处理 CPU 密集型计算任务 rayon 现有框架无法完美适配移动端(一) Core Thread Thread Worker Worker task task Local queue Local queue Tokio 采用了如右图这种 GMP 模式: • 一核可以绑定多线程,每个线程拥有一个 Worker ,每个 ,每个 Worker 拥有一个任务队列 • 但线程拥有相同优先级 • Worker 只持有一个本地 FIFO 队列 移动端诉求:优先级 • 任务区分优先级: UI 显示 vs 后台下载 • 大小核调度 Incompatibility of the third party Runtime with Mobile 现有框架无法完美适配移动端(二) 移动端诉求:易用性 • IO 密集性任务与 CPU0 码力 | 25 页 | 1.64 MB | 1 年前3C++高性能并行编程与优化 - 课件 - Zeno 中的现代 C++ 最佳实践
com/zenustech/zeno/tree/zeno2 • Zeno 1.0 所在的分支: https://github.com/zenustech/zeno/ Zeno 中的基本类型 • IObject 一切对象的公共基类。 • INode 一切节点的公共基类。 多态的经典案例 • IObject 具有一个 eatFood 纯虚函数,而 CatObject 和 DogObject 继承自 IObject 接口。 小知识: shared_ptr 如何深拷贝? 浅拷贝: 深拷贝: 思考:能不能把拷贝构造函数也作为虚函数? • 现在我们的需求有变,不是去对同一个对象调用两次 eatTwice ,而是先把对象复制一份 拷贝,然后对对象本身和他的拷贝都调用一次 eatFood 虚函数。 • 代码如下,这要怎么个封装法呢?你可能会想,是不是可以把拷贝构造函数也声明为虚函 数,这样就能实现了拷贝的多态?不行,因为 数,这样就能实现了拷贝的多态?不行,因为 C++ 规定“构造函数不能是虚函数”。 模板函数?未免有些差强人意 • 索性把 eatTwice 声明为模板函数的确能解决问题,但模板函数不是面向对象的思路,并 且如果 cat 和 dog 是在一个 IObject 的指针里就会编译出错,例如右图的 vector(这是游戏引擎中很常见的用法)。 正确解法:额外定义一个 clone 作为纯虚函数,然后让猫和狗分别实现他 0 码力 | 54 页 | 3.94 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程
git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) GPU 专题) 为什么需要模板函数( template ) • 避免重复写代码。 • 比如,利用重载实现“将一个数乘以 2” 这个 功能,需要: 为什么面向对象在 HPC 不如函数式和元编程香了? 这个例子要是按传统的面向对象思想,可能是这样: 令 Int, Float, Double 继承 Numeric 接口类并实现 ,其中 multiply(int) 作为虚函数。然后定义: Numeric0 码力 | 82 页 | 12.15 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型
解决:使用互斥量和原子变量 暴力解决方案就是用 std::mutex 避免多个线程同时访问。 然而这样会严重影响性能,锁和原子多了,就根本并行不起来。 教科书式的解决:二次判断法 这样如果 block 已经非空,则可以不用上锁,减少上锁次数。 如果 block 为空,则上锁;再次检测是否为空,空则分配内存, 非空说明其他线程已经帮我分配好了,直接退出。 结果反而还变慢了……所以有时候教科书(如 Concurrency std::mutex 会切换到操作系统内核中去调度 ,非常低效。而 tbb::spin_mutex 则是基于硬件原子指令的,完全 用户态的实现。区别: std::mutex 的陷入等待会让操作系统挂起 该线程,以切换到另一个;而 tbb::spin_mutex 的陷入等待是通过 不断地 while (locked); 这样一个死循环不断轮询。对于我们高性 能计算而言 tbb::spin_mutex 更高效。其实 字节…… 小彭老师解决:访问者模式 把写入过的块地址缓存起来,可以避免多次访问全局表的开销。缓存在访问 者 (accessor) 的成员 map 里。访问者对象被我用 OpenMP 标记为 firstprivate ,意味着这个 map 是线程局部的,因此对他的访问不需要加锁, 更快。 应用在刚刚的 SNode 系统中 std::unordered_map 不支持 omp parallel for0 码力 | 102 页 | 9.50 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅
git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) 的处理能力,是吗? • 显然不是。甚至在两个处理器上同时运行两个线程也不见得可以获得两倍的性能。相似的 ,大多数多线程的应用不会比双核处理器的两倍快。他们应该比单核处理器运行的快,但 是性能毕竟不是线性增长。 • 为什么无法做到呢?首先,为了保证缓存一致性以及其他握手协议需要运行时间开销。在 今天,双核或者四核机器在多线程应用方面,其性能不见得的是单核机器的两倍或者四倍。 这一问题一直伴随0 码力 | 116 页 | 15.85 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化
点 。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。 • 小彭老师经验公式: 1 次浮点读写 ≈ 8 次浮点加法 • 如果矢量化成功( SSE ): 1 次浮点读写 ≈ 32 次浮点加法 • 如果 CPU 有 4 核且矢量化成功: * 重新认识 SOA * * * * 结构体的内存布局: AOS 与 SOA • AOS ( Array of Struct )单个对象的属性紧挨着存 • xyzxyzxyzxyz • SOA ( Struct of Array )属性分离存储在多个数组 • xxxxyyyyzzzz • AOS 必须对齐到 2 的幂才高效, 常浪费时间。 解决:手动池化 • 声明为 static 变量,这样第二次进入 func 的时候还是 同一个数组,不需要重复分配内存。 thread_local 表示 如有多个线程,每个线程保留一个 tmp 对象的副本, 防止多线程调用 func 出错。 • 返回时(或者进入时)调用 tmp.clear() 清除已有数据。 由于 vector 的特性,他只会把 size() 标记为 0 并调 用其成员的解构函数,而不会实际释放内存(0 码力 | 147 页 | 18.88 MB | 1 年前3
共 26 条
- 1
- 2
- 3