积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(27)C++(18)Rust(9)系统运维(3)DevOps(2)数据库(1)MySQL(1)云计算&大数据(1)Kubernetes(1)存储(1)

语言

全部中文(简体)(30)中文(简体)(2)

格式

全部PPT文档 PPT(32)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 32 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 数据库
  • MySQL
  • 云计算&大数据
  • Kubernetes
  • 存储
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    写的数据,并标记为脏( dirty )。 • 当读和写创建的新条目过多,缓存快要塞不下时,他会把 最不常用的那个条目移除,这个现象称为失效( invalid )。 如果那个条目是被标记为脏的,则说明是当时打算写入的 数据,那就需要向主内存发送写入请求,等他写入成功, 才能安全移除这个条目。 • 如有多级缓存,则一级缓存失效后会丢给二级缓存。 连续访问与跨步访问 • 如果访问数组时,按一定的间距跨步访问,则效率如何? 字节,才能避免 浪费读取的带宽。这样的条件实在有点苛刻,毕 竟小彭老师的电脑还不支持 AVX512 。 • 可以用 _mm_stream_si32 指令代替直接赋值的 写入,他能够绕开缓存,将一个 4 字节的写入操 作,挂起到临时队列,等凑满 64 字节后,直接写 入内存,从而完全避免读的带宽。 • 可惜这货只支持 int 做参数,要用 float 还得转换 一下指针类型, bitcast
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    关键特性 云原生 Cloud-Native Graph Database 支持弹性伸缩,有 效利用硬件资源,高可用,高 可靠,故障自愈,低成本运维 HTAP Hybrid Transactional/Analytical Processing ,高性能图计算引 擎,预置 20 余种图计算算法 ,可扩展的分析引擎支持更复 杂的数据挖掘和机器学习场景 MPP Massively Parallel AQL(Atlas Graph Query Language) ,类 SQL 的图查询 语言,内置上百种分析函数, 面向分析师友好,拥抱标准, 基于 openCypher 向 ISO GQL 迈进 实时大图 支持万亿节点存储及流式计算 引擎的结合,最新数据实时入 库构图,为在线业务决策分析 提供有力支撑 AtlasGraph 架构及实现 新一代图技术应用特征简介 Takeaway AtlasGraph i64 u32 u32 string string 定长 变长 高可用技术方案 基于 Chain Replication ( CRAQ ) 算法实现,进行数据副本处理,头 结点写,多结点读,支持读写分离 ,提供更好的并发查询能力 数据高可用实现 Chain Replication 数据高可用方案 服务高可用实现 系统中 Meta , TS 服务采用主备架 构,基于 Raft 算法实现租约,进行
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    面向开发者的云原生 DevOps 平台 角色: 产品 / 架构 开发 测试 运维 运维 / 开发 技术支持 事件 需求设计 架构设计 拆任务、写代码 代码集成 xN 单元测试验证 xN 代码扫描 xN 自测、联调 xN 集成验证 xN 写测试用例 系统验证 xN 自动化测试 xN 性能测试 xN 安全测试 xN 数据变更 xN 服务全生命周期而非只关注代码 ● 每天多次提交提早验证 Zadig 采用「云原生产品级交付」设计理念 数字化产研协同 • 环境 - 统一开发者协作平面 • 工作流 - 统一交付变更通道 • 异构支持 - 统一产研运管理平面 重视开发者体验,工程师不再做脏活累活 传统 DevOps 体系 Zadig 云原生 DevOps 平台 高人效 低人效 低人效 / 低质量 / 低效率 / 开 源 基 本 能 力 开 源 1.5 个月核心重构 65% 功能实现开源 支撑开源社区开发者环境 易 用 性 增 强 接入:安装 10 分钟以内,成功率达 90% 集成环境:支持开发者 Remote debug 工作流:效率和性能、开发者体验提升 贡献者流程建立 开 放 社 区 搭 建 2021 年 5 月 2021 年 7 月 2021 年 9 月 2021
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    • github.com/zenustech/zeno ZENO 中的流体仿真,就是基于 OpenVDB 的稀疏体积 • github.com/zenustech/zeno Taichi 也支持稀疏数据结构 • https://yuanming.taichi.graphics/publication/2019-taichi/taichi-lang-slides.pdf 第 4 章:并行与随机访问 是线程局部的,因此对他的访问不需要加锁, 更快。 应用在刚刚的 SNode 系统中 std::unordered_map 不支持 omp parallel for 遍历…… tbb::concurrent_unordered_map 可以 tbb::parallel_for 为了支持 std::unordered_map 先把要遍历的坐标和块 指针放到一个数组里,然后再对这个平坦的数组遍历。 指针数组的话,本来就是平坦的二维数组,直接 指针数组的话,本来就是平坦的二维数组,直接 用 omp parallel for collapse(2) 遍历二维区间。 把 func 捕获为 firstprivate ,从而支持用 lambda 捕获的访问者模式。 实现访问者模式 • 额,总之就是每一层都有一个缓存。 第 5 章:量化整型 使用 int :每个占据 4 字节 • 记得我第七课说过,一个简单的循环体往 往会导致内存成为瓶颈(
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程

    T> • 可以声明类型 T 作为模板尖括号里的参数。除了 类型,任意整数也可以作为模板参数: • template • 来声明一个整数 N 作为模板参数。 • 不过模板参数只支持整数类型(包括 enum )。 • 浮点类型、指针类型,不能声明为模板参数。自 定义类型也不可以,比如: • template // 错误! 模板参数:多个模板参数 vector 类型的参数。 • 这里用了 const & 避免不必要的的拷贝。 • 不过,这种部分特化也不支持隐式转换。 为什么要支持整数作为模板参数:因为是编译期常量 • 你可能会想,模板只需要支持 class T 不就行了?反正 int N 可以作为函数的 参数传入,模板还不支持浮点。 • template void func(); • 和 • void func(int ...] = tup; • 利用一个方括号,里面是变量名列表,即 可解包一个 tuple 。里面的数据会按顺序 赋值给每个变量,非常方便。 tuple :结构化绑定为引用 • 结构化绑定也支持绑定为引用: • auto &[x, y, ...] = tup; • 这样相当于解包出来的 x, y, ... 都是 auto & 推 导出来的引用类型。对引用的修改可以影响到原 tuple
    0 码力 | 82 页 | 12.15 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 16 现代 CMake 模块化项目管理指南

    用户找到并了解该包的具体信息。 • /usr/lib/cmake 这个位置是 CMake 和第三方库作者约定俗成的,由第三方库的安装程序 负责把包配置文件放到这里。如果第三方库的作者比较懒,没提供 CMake 支持(由安装 程序提供 XXXConfig.cmake ),那么得用另外的一套方法( FindXXX.cmake ),稍后细 谈。 Windows 系统下的搜索路径 • / • /cmake/ =/usr/local 则会拷贝到 /usr/local/lib/libtest.so 如果第三方库发懒,没有提供 Config 文件怎么办? • 绝大多数常用 C++ 库都提供了 CMake 支持(即使他们本身不一定是用 CMake 构建 的): • /usr/lib/cmake/Boost-1.80.0/BoostConfig.cmake • /usr/lib/cmake/opencv4/OpenCVConfig 但是,也有少数不听话的库,官方不提供 CMake 支持,即安装时不自带 Config 文件。 • 恼人的是,这些不听话的库有些竟然是非常热门的库!例如 Python , CUDA , Jemalloc 。 • 为了不影响 CMake 用户体验, CMake 发明了 Find 文件( FindXXX.cmake ),你不 支持我是吧?我支持你! Find 文件会在 CMake 安装时负责安装到
    0 码力 | 56 页 | 6.87 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    允许函数参数为自动推断( auto ) 未来: C++20 引入协程( coroutine )和生成器( generator ) 未来: C++20 标准库加入 format 支持 跑远了! • 鉴于 C++20 还没有普遍落地(例如 CMake 不支持 C++20 modules )因此我们的课程 基于 C++17 标准,有时会谈到 C++20 作为扩展阅读。 C++ 有哪些面向对象思想? C++ 思想:封装 员一样的构造函数。 • 他会将 {} 内的内容,会按顺序赋值给对象的每 一个成员。 • 目的是为了方便程序员不必手写冗长的构造函 数一个个赋值给成员。 • 不过初始化列表的构造函数只支持通过 {} 或 = {} 来构造,不支持通过 () 构造。其实是为了向 下兼容 C++98 编译器默认生成的构造函数:初始化列表(初始化一部分,剩余的为默认 值) • 这个编译器自动生成的初始化列表构造函 数,除了可以指定全部成员来构造以外, 追求性能时推荐用拷贝构造,因为可以避免一次无参构造,拷贝赋值是出于需要临时修改 对象的灵活性需要。 • 这个函数同样可以由 = delete 和 = default 控制是否默认生成。 • 注: return *this 是为了支持连等号 a = b = c; 编译器自动生成的函数:全家桶 • 其实,除了拷贝构造和拷贝赋值,编译器会自动生成的特殊函数还有这些: • 这在其他面向对象语言中是看不到的。他们分别是什么作用?稍后揭晓。
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    vcxproj 的生成。 project 的初始化: LANGUAGES 字段 • project( 项目名 LANGUAGES 使用的语言列表 ...) 指定了该项目使用了哪些编程语言。 • 目前支持的语言包括: • C : C 语言 • CXX : C++ 语言 • ASM :汇编语言 • Fortran :老年人的编程语言 • CUDA :英伟达的 CUDA ( 3.8 版本新增) CMAKE_CXX_STANDARD_REQUIRED 是 BOOL 类型,可以为 ON 或 OFF ,默认 OFF 。 • 他表示是否一定要支持你指定的 C++ 标准:如果为 OFF 则 CMake 检测到编译器不支 持 C++17 时不报错,而是默默调低到 C++14 给你用;为 ON 则发现不支持报错,更安 全。 https://crascit.com/2015/03/28/enabling-cxx11-in-cmake/ 特性。 • 此外,最好是在 project 指令前设置 CMAKE_CXX_STANDARD 这一系列变量,这样 CMake 可以在 project 函数里对编译器进行一些检测,看看他能不能支持 C++17 的特 性。 https://crascit.com/2015/03/28/enabling-cxx11-in-cmake/ 常见误区:小彭老师,我手动添加 -std=c++17 行不行?
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    英伟达 GTX900 及以上显卡。 • CUDA 11 及以上。 • CMake 3.18 及以上。 我负责监督你学习 第 0 章: Hello, world! CMake 中启用 CUDA 支持 • 最新版的 CMake ( 3.18 以上),只需在 LANGUAGES 后面加上 CUDA 即可启用 。 • 然后在 add_executable 里直接加你 的 .cu 文件,和 图片解释板块和线程 • 如需总的线程数量: blockDim * gridDim • 如需总的线程编号: blockDim * blockIdx + threadIdx 三维的板块和线程编号 • CUDA 也支持三维的板块和线程区间。 • 只要在三重尖括号内指定的参数改成 dim3 类型即可。 dim3 的构造函数就是接受三 个无符号整数( unsigned int )非常简单 。 • dim3(x 函数,就会出错 。 分离 __device__ 函数的声明和定义:解决 • 开启 CMAKE_CUDA_SEPARABLE_COMPILATION 选 项(设为 ON ),即可启用分离声明和定义的支持。 • 不过我还是建议把要相互调用的 __device__ 函数放在 同一个文件,这样方便编译器自动内联优化(第四课讲 过)。 两种开启方式:全局有效 or 仅针对单个程序 只对 main
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    first; // K 类型 • (*it).second;// V 类型 map 的遍历:用 C++17 range-based loop • 和 vector 等 STL 容器一样, map 也支持 C++17 的 range-based loop 语法进行遍历 。 • for (auto tmp: m) • 由于刚刚说了, map 真正的“元素类型”是 K-V 对,所以这里的 auto 这里说的指针,不光是 T * 指针,还包括 T & 引用, iterator 迭代器,他们都是指针的 变体。 • 而 structural-binding 和 range-based loop 语法支持引用,也非常简单: • for (auto &[k, v]: m) { • v = v2; // 引用比指针还方便,自动解引用。此处等价于迭代器版的 (*it).second = v2; 这里说的指针,不光是 T * 指针,还包括 T & 引用, iterator 迭代器,他们都是指针的 变体。 • 而 structural-binding 和 range-based loop 语法支持引用,也非常简单: • for (auto &[k, v]: m) { • v = v2; // 引用比指针还方便,自动解引用。此处等价于迭代器版的 (*it).second = v2;
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
共 32 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件07游人RustCCAtlasGraphZadig面向开发开发者原生DevOps平台10031602110817
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩