C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型
第 0 章:稀疏矩阵 稠密数组存储矩阵 用 foreach 包装一下枚举的过程 改用 map 来存储 分离 read/write/create 三种访问模式 foreach 直接给出当前坐标指向的值 改用 unordered_map 来存储 unordered_map 手动 read(i, j) 也一样速度 索性把坐标和值打包成 tuple ,存储在 vector 按行压缩( Compressed e91.html 第 1 章:稀疏网格 稠密网格计算粒子经过的格点数量 改用更小的 char 存储 只用一个 bit 存储,一个 char 可以存储 8 个 bit 用 map 来存储 读取:如果不存在,则读到 0 写入:如果不存在,则创建该表项 用 unordered_map 来存储 map 基于红黑树,会按照键值排序,需要键值具有 operator< 重载,复杂度 O(logn) 16x16 分块存储 分块能减少 unordered_map 中存储的表项数量,从而减轻哈 希的压力。但意味着键值在空间上需要具有一定的局域性,否 则 会浪费分块中一 部分空间。 然而我们这里是 要用他记录粒子 经过的点,因此 具有一定空间局 域性,能够被分 块优化。 实际上空间局域 性正是稀疏网格 能够实现的一大 前提,稍后详细 讨论。 在 16x16 分块的基础上,只用一个 bit 存储 图片解释稀疏的好处0 码力 | 102 页 | 9.50 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起
TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 库就是受到他启发(完全是头文件组成) 6. fmtlib/fmt - 格式化库,提供 std::format 的替代品(需要 -DFMT_HEADER_ONLY ) 7. gabime/spdlog - 能适配控制台,安卓等多后端的日志库(和 fmt 冲突!) • 只需要把他们的 include 目录或头文件下载下来,然后 include_directories(spdlog/include) 即 可。 • 缺点:函数直 为例)的源码放到你工程的根目录: • 这些库能够很好地支持作为子模块引入: 1. fmtlib/fmt - 格式化库,提供 std::format 的替代品 2. gabime/spdlog - 能适配控制台,安卓等多后端的日志库 3. ericniebler/range-v3 - C++20 ranges 库就是受到他启发 4. g-truc/glm - 模仿 GLSL 语法的数学矢量 / 矩阵库 5. abseil/abseil-cpp0 码力 | 32 页 | 11.40 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 12 从计算机组成原理看 C 语言指针
如果你没看出来(哪怕是其中一个),那就要好好上小彭老师的课哦! 字节( byte ) 和位( bit )有什么区别 • 众所周知,计算机是二进制的,存储的实际上是一个个 0 和 1 。 • 每个存储 0 或 1 的空间称为一个位( bit ),一位可以存储 0 或 1 两个可能的值。 • 现在的计算机都会把 8 个位打包成一个字节( byte ),也就是说: 1 字节 = 8 位。 • 一字节可以表示 = 1024 KB • 1 GB = 1024 MB • 1 TB = 1024 GB • 也有人说 1 KiB 才是 1024 B 的,但是很少有人采用这种写法…… • 在买硬盘和 u 盘等存储设备的时候,往往会出现容量减少的情况,这是因为生产厂家按照 的是 1000 倍的换算的,而我们的系统中一般都是按照 1024 倍去计算的。 字还被用于表示内存地址 • 字的长度除了决定一次处理 大小(也就是字的大 小)决定了他能读写的内存大小,例如: • 由于 16 位计算机的寄存器只能存储 16 位,他只能访问 65536 字节( 64 KB )的内存 。 • 由于 32 位计算机的寄存器只能存储 32 位,他只能访问 4 GB 的内存。 • 由于 64 位计算机的寄存器能存储 64 位,他理论上能访问 16777216 TB 的内存! • 因此,如果你的电脑内存超过了 40 码力 | 128 页 | 2.95 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化
TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 什么是 xmm 系列寄存器? • xmm 寄存器有 128 位宽。 • 可以容纳 4 个 float ,或 2 个 double 。 • 刚才的案例中只用到了 xmm 的低 32 位 用于存储 1 个 float 。 addss 是什么意思? • 可以拆分成三个部分: add , s , s 1. add 表示执行加法操作。 2. 第一个 s 表示标量 (scalar) ,只对 xmm 的容器:我是说,内存分配在堆上的容器 • 存储在堆上(妨碍优化): • vector, map, set, string, function, any • unique_ptr, shared_ptr, weak_ptr • 存储在栈上(利于优化): • array, bitset, glm::vec, string_view • pair, tuple, optional, variant 存储在栈上无法动态扩充大小,这就是0 码力 | 108 页 | 9.47 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化
CPU 的厂商早就意识到了内存延迟高,读写效率低 下的问题。因此他们在 CPU 内部引入了一片极小的存储 器——虽然小,但是读写速度却特别快。这片小而快的 存储器称为缓存( cache )。 • 当 CPU 访问某个地址时,会先查找缓存中是否有对应的 数据。如果没有,则从内存中读取,并存储到缓存中; 如果有,则直接使用缓存中的数据。 • 这样一来,访问的数据量比较小时,就可以自动预先加 宽。三级缓存也装不下,那就取决于主内存 的带宽了。 • 结论:要避免 mem-bound ,数据量尽量足 够小,如果能装的进缓存就高效了。 L2: 256 KB L3: 12 MB 缓存的工作机制:读 • 缓存中存储的数据结构: • struct CacheEntry { • bool valid; • uint64_t address; • char data[64]; • }; 架构中每个条目的存储 64 字节的数据,这个条目 又称之为缓存行( cacheline )。 • 当访问 0x0048~0x0050 这 4 个字节时,实际会导致 0x0040~0x0080 的 64 字节数据整个被读取到缓存中。 • 这就是为什么我们喜欢把数据结构的起始地址和大小对齐到 64 字节,为的是不要浪费缓存行的存储空间。 缓存的工作机制:写 • 缓存中存储的数据结构:0 码力 | 147 页 | 18.88 MB | 1 年前3谈谈MYSQL那点事
技巧分享 技巧分享 Q Q & & AA MyISAM MyISAM 特点 特点 MyISAM vs MyISAM vs InnoDB InnoDB • 数据存储方式简单,使用 数据存储方式简单,使用 B+ Tree B+ Tree 进行索引 进行索引 • 使用三个文件定义一个表: 使用三个文件定义一个表: .MYI .MYD .frm .MYI .MYD 的方式来进行数据存储 的方式来进行数据存储 (ibdata1, ib_logfile0) (ibdata1, ib_logfile0) • 支持 事务、外键约束等数据库特性 支持 事务、外键约束等数据库特性 • Rows level lock , Rows level lock , 读写性能都非常优秀 读写性能都非常优秀 • 能够承载大数据量的存储和访问 能够承载大数据量的存储和访问 • 数据分布 网络 网络 操作系统 操作系统 硬件 硬件 使用好的硬件,更快的硬盘、大内存、多核 使用好的硬件,更快的硬盘、大内存、多核 CPU CPU ,专业的 ,专业的 存储服务器( 存储服务器( NAS NAS 、 、 SAN SAN ) ) 设计合理架构,如果 设计合理架构,如果 MySQL MySQL 访问频繁,考虑 访问频繁,考虑 Master/Slave0 码力 | 38 页 | 2.04 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程
试图解决:通过指针传递 • 那你可能会想,既然不能返回,那作为指 针传入局部变量的引用,不就好了。 • 这样,在 cudaDeviceSynchronize() 以后 ,应该可以获取数据了吧? • 结果令人失望,尽管给 kernel 传了指向 ret 的指针,但 ret 的值并没有被改写成 功。 分析返回的错误代码 • CUDA 的函数,如 cudaDeviceSynchronize() 堆上分配试试? • 那你可能会想,难道是因为我的 ret 创建 在栈上,所以 GPU 不能访问,才出错的 ? • 于是你试图用 malloc 在堆上分配一个 int 来给 GPU 访问,结果还是失败了。 原因: GPU 使用独立的显存,不能访问 CPU 内存 • 原来, GPU 和 CPU 各自使用着独立的内 存。 CPU 的内存称为主机内存 (host) 。 GPU 使 用的内存称为设备内存 注意,这里一定要把 TOCK 放到同步之 后。原因之前说过,因为对 GPU 核函数 的调用是异步的,只有 cudaDeviceSynchronize() 以后才真正完 成执行,才能算出真的时间。 • 查看结果,发现 GPU 比 CPU 快了很多 ,这是当然的。 调整参数 • 适当调整板块数量 gridDim 和每板块的线 程数量 blockDim ,还可以更快一些。 • 顺便一提,这样的数学函数还有0 码力 | 142 页 | 13.52 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串
计算机如何表达字符 • 众所周知,计算机只能处理二进制 整数,字符要怎么办呢? • 于是就有了 ASCII 码表,他规定, 每个英文字符(包括大小写字母、 数字、特殊符号)都对应着一个整 数。在计算机里只要存储这个的整 数,就能代表这个字符了。 • 例如 32 代表空格, 48 代表 ‘ 0’ , 65 代表 ‘ A’ , 97 代表 ‘ a’…… • 32~126 这些整数就用于是表示这些 可显示字符 必须告诉他是字符串( %s )还是整数( %d )还是 字符( %c ),必须和右边的参数一致,初学者容易搞错 。 • 而且即使搞错了也能正常编译通过(一些高级的编译器会 给出警告),但是运行结果不对,或者还有可能崩溃。 泛型的 iostream 应运而生 • 得益于 C++ 的重载技术, cout 不用你手动指定类型,他 会自动识别参数的类型,帮你调用相应的格式化函数。 c_str /zeno/utils/format.h cout 支持十六进制 官方推荐用 stringstream 取代 to_string • cout 这么方便,能不能让他不要直接输出到控制台,而是把结果存到一个字 符串呢?这正是字符串流 stringstream 的作用。 • 和 cout 完全一样,同样的 << 和 hex 选项。 • 但是他的输出会保存到一个字符串里。 • 调用成员函数 .str()0 码力 | 162 页 | 40.20 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南
1 章:添加源文件 一个 .cpp 源文件用于测试 CMake 中添加一个可执行文件作为构建目标 另一种方式:先创建目标,稍后再添加源文件 如果有多个源文件呢? 逐个添加即可 使用变量来存储 建议把头文件也加上,这样在 VS 里可以出现在“ Header Files” 一栏 使用 GLOB 自动查找当前目录下指定扩展名的文件,实现批量添加源文件 启用 CONFIGURE_DEPENDS >_SOURCE_DIR 等变量 小技巧: CMake 的 ${} 表达式可以嵌套 因为 ${PROJECT_NAME} 求值的结果是 hellocmake 所以 ${${PROJECT_NAME}_VERSION} 相当于 ${hellocmake_VERSION} 进一步求值的结果也就是刚刚指定的 0.2.3 了。 cmake_minimum_required 指定最低所需的 CMake 版本 假如你写的 第 7 章:变量与缓存 重复执行 cmake -B build 会有什么区别? 可以看到第二次的输出少了很多,这是因为 CMake 第一遍需要检测编译器 和 C++ 特性等比较耗时,检测完会把结果存储到缓存中,这样第二遍运行 cmake -B build 时就可以直接用缓存的值,就不需要再检测一遍了。 如何清除缓存?删 build 大法了解一下 然而有时候外部的情况有所更新,这时候 CMake0 码力 | 166 页 | 6.54 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅
TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 分钟。 • 他把图像切成 4 份,每个是原来的 1/4 大小 ,这样每个小块渲染只需要 1 分钟。 • 然后他把 4 个小块发给 4 个处理器核心, 1 分钟后 4 个处理器都渲染完毕得到结果。 • 最后只需将 4 个小块拼接起来即可得到完整 的 cornell box 图像。总共只花了 1 分钟。 图形学爱好者:我看中的是多核,目的是加速比,如果是单核,那多线程对我无用! 某互联 O(logn) ,工作复杂度为 O(n) 。 封装好了: parallel_reduce 保证每次运行结果一致: parallel_deterministic_reduce 并行缩并的额外好处:能避免浮点误差,例如求平均值 扫描( scan ) 如图所示,扫描和缩并差不多,只不过他会把求和的中间结果存到数组里去 1 个线程,依次处理 8 个元素的扫描,花了 7 秒 用电量: 1*7=7 度电 总用时:0 码力 | 116 页 | 15.85 MB | 1 年前3
共 31 条
- 1
- 2
- 3
- 4