积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(10)C++(7)系统运维(3)Rust(3)DevOps(2)数据库(1)MySQL(1)存储(1)

语言

全部中文(简体)(13)中文(简体)(1)

格式

全部PPT文档 PPT(14)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 14 个.
  • 全部
  • 后端开发
  • C++
  • 系统运维
  • Rust
  • DevOps
  • 数据库
  • MySQL
  • 存储
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 Zadig 产品使用手册

    化 核 心 资 产 是 软 件 和 数 据 : 传 统 软 件 / 配 置 / 数 据 迭 代 方 式 已 经 无 法 适 应 , 软 件 工 程 化 时 代 已 然 到 来 。 Z a d i g 软 件 工 程 平 台 是 国 内 落 地 程 度 最 深 、 使 用 范 围 最 广 ( 近 千 家 企 业 ) 的 云 原 生 D e v O p s 平 台 。 领先企业抢先实践 Zadig Zadig 研发数字化转型方案正成为产业数字化战略的核心环节 Zadig 设计思路:通过「平台工程」解决流程挑战,通过「技术升级」提升组织效能 01 04 02 03 工程化协同:“人、技术、流 程、工具” 四维协同基线,沉 淀全流程数据,从感知到赋 能,服务于工程师 释放云基建能力:链接任何云 及自建资源(容器、主机、车 机、端等),释放云原生价值 和企业创新力 生态开放:广泛开放系统 手动更新服务、手动打包、交付 付效率低下、占据大量研发时间 、研发利用率极低 环境不透明、测试效率低下、测 试有效性低、大量手工、价值难 以体现 上下游烟囱式、协作效率低、团 队花大量时间在碎片化沟通和流 程制定上、各方能力受限、无法 快速响应市场需求 层级越高、对产研状态越模糊 管理低效、延误战机 少量配置、快速拉起环境、稳定 性有保障、减少 90% 手工操作、 赋能开发、员工成就感高 碎片化:手工协作
    0 码力 | 52 页 | 22.95 MB | 1 年前
    3
  • ppt文档 Await-Tree Async Rust 可观测性的灵丹妙药 - 赵梓淇

    异步编程的共同优势 • async/await 关键字 • 用户态调度 • Async Rust 的独特优势 • Ownership 与 Lifetime • 无栈协程 Async Rust 回顾 Rust 的无栈协程抽象 — Future Async Rust 回顾 • 通过 poll 驱动的状态机 • 组合嵌套为调度单元: Task • async fn 语法糖 Async Backtrace 不够直观 ( 调用栈 -> 调用树 ) • Tracing 无法追踪调用关系的变化 Async Rust 观测与调试的痛点 Async Rust 回顾 • 特性:用户态调度的无栈协程 • Pending Task 不存在栈空间 • 痛点:观测与调试工具无法还原 Pending Task 的执行状态 • 难以得知 Task 阻塞的位置和原因 • 难以调试 Async Stuck
    0 码力 | 37 页 | 8.60 MB | 1 年前
    3
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    无需打包镜像,即可一键热部署到自测 环境 • 与 Zadig 基准环境交互,完成自测、 联调验证 云原生 IDE 插件( vscode ) 执 行 企 业 合 规 S O P 流 程 , 灰 度 蓝 绿 部 署 策 略 , 完 成 生 产 环 境 发 布 最 后 一 公 里 特色模块(一) – 发布管理 多服务编排升级 配置变更 生产观测 数据变更 灰度发布 流程自动化 人降低为 1 人) 3. 整体生产力提升一倍以上 4. 大幅降低发布事故和错误率 自动化测试场景:上千测试用例为发布保驾护航 — — 字 节 跳 动 - 飞 书 S R E 工 程 师 “ Z a d i g 解 决 方 案 面 向 开 源 , 可 用 性 极 高 , 通 用 性 场 景 适 配 性 强 , 重 复 利 用 度 高 。 市 面 上 的 其 他 产 品 基 本 化 & 增强 DevOps 工具链的建 设 典型客户:路特斯、七牛、非 码、连尚、锅圈、埋堆堆、九州 通 研发效能提升(开发、测试、发布工程) 优化加速产研流程,工程师团队级规模化协 作,消除工具孤岛,系统性的提升人效 典型客户:字节飞书、云器、驭势、小鹏、 易快报、 MioTech 、星云有客、药师帮 大规模微服务环境治理 支持多分支、多业务间协作,消除环境不稳
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    支持超参数自动调优,解放算 法科学家生产力,避免繁杂的 手动调参 海致图神经网络平台特点 Rust 语言特性助力构建高性能图数据库 01 利用 Rust Stream 进行数据流式 处理 02 03 协程和严格的内存安全性,编译 时捕获数据竞争和并发问题 异步物理算子实现,异步 IO 数 据获取 01 可静态分发的 Trait 在不带来性 能损失的同时也提高代码组织性 02 03 强大的跨平台能力,在不同架构 编译期间对生命周期检查确保内 存安全,无 GC 和运行时损耗 01 完善的测试类型支持,包括单元 测试、集成测试、基准测试等 02 03 和文档系统以及 CI/CD 工具的良 好集成 完整的断言系统 异步协程 零成本抽象 强大的测试框架 REPL 命令行客户端 WebUI 面向分析师,提供图模型定义、数据管理、图查询分析、服务状态监控、用户管理能力 免代码,可视化定义实体、 边,设计图模型。
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 Rust 异步并发框架在移动端的应用 - 陈明煜

    intensive 结构化并发 Structured Concurrency 核心在于通过一种父子结构化的方法实现并发程序,用具有明确入口点和出口 点的控制流结构来封装并发任务(可以是线程也可以是协程)的执行,确保所有派生任务在出口之前完 成。 Structured concurrency 结构化并发带来的好处:  更高的易用性,用户不再需要显示调用 await  提高程序的可读性和可维护性
    0 码力 | 25 页 | 1.64 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    引入模块( module ) https://zhuanlan.zhihu.com/p/350136757 未来: C++20 允许函数参数为自动推断( auto ) 未来: C++20 引入协程( coroutine )和生成器( generator ) 未来: C++20 标准库加入 format 支持 跑远了! • 鉴于 C++20 还没有普遍落地(例如 CMake 不支持 C++20
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    C++11 开始的多线程编 程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 下载完成前,整个界面都会处于“未响应”状 态,用户想做别的事情就做不了。 现代 C++ 中的多线程: std::thread • C++11 开始,为多线程提供了语言级别的 支持。他用 std::thread 这个类来表示线 程。 • std::thread 构造函数的参数可以是任意 lambda 表达式。 • 当那个线程启动时,就会执行这个 lambda 里的内容。 • 这样就可以一边和用户交互,一边在另一 对象移动到一个全局变量去, 从而延长其生命周期到 myfunc 函数体外 。 • 这样就可以等下载完再退出了。 main 函数退出后自动 join 全部线程 • 但是需要在 main 里面手动 join 全部线 程还是有点麻烦,我们可以自定义一个类 ThreadPool ,并用他创建一个全局变量, 其解构函数会在 main 退出后自动调用。 std::jthread :符合 RAII 思想,解构时自动 join()
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    访问他的第 i 个元素。 • 然后因为我们用的统一内存 (managed) , 所以同步以后 CPU 也可以直接读取。 多个线程,并行地给数组赋值 • 刚刚的 for 循环是串行的,我们可以把线 程数量调为 n ,然后用 threadIdx.x 作为 i 索引。这样就实现了,每个线程负责给数 组中一个元素的赋值。 小技巧:网格跨步循环( grid-stride loop ) • 无论调用者指定了多少个线程 cudaDeviceSynchronize() 以后才真正完 成执行,才能算出真的时间。 • 查看结果,发现 GPU 比 CPU 快了很多 ,这是当然的。 调整参数 • 适当调整板块数量 gridDim 和每板块的线 程数量 blockDim ,还可以更快一些。 • 顺便一提,这样的数学函数还有 sqrtf , rsqrtf , cbrtf , rcbrtf , powf , si nf , cosf , sinpif —— 王鑫 磊 避免线程组产生分歧 • 解决:我们加 if 的初衷是为了节省不必要 的运算用的,然而对于 j < 32 以下那几个 并没有节省运算(因为分支是按 32 个线 程一组的),反而增加了分歧需要避免副 作用的开销。因此可以把 j < 32 以下的那 几个赋值合并为一个,这样反而快。 使用网格跨步循环一次读取多个 arr 元素 • 可见共享内存中做求和开销还是有点大,之后那么
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    SQL SQL 的执行情况 的执行情况  使用 使用 SHOW PROCESSLIST SHOW PROCESSLIST 来查看当前 来查看当前 MySQL MySQL 服务器线 服务器线 程 程 执行情况,是否锁表,查看相应的 执行情况,是否锁表,查看相应的 SQL SQL 语句 语句  设置 设置 my.cnf my.cnf 中的 中的 long-query-time
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    operator bool 的 std::_Bit_reference 对象,而且效率很低。 • 如果配合用 decltype 和 auto 的话,他们不会正确推导出 bool ,影响我们正常使用模板元编 程。 • 一般认为 vector 是 C++ 标准库设计上的一个败笔,是为了向前兼容才保持这样不变的 。 • 他们就不应该直接特化 vector 而是哪怕搞另一个名字,比如 被实际分配。比如这里我们分配了 16GB 内 存,但是只访问了他的前 4KB ,这样只有一个页被分配,所以非常快。 实验:那如果分配超过机器内存容量的空间会怎样 • 既然是操作系统的内存是惰性分配给用户程 序的,分块大小就是 4KB ,那么是不是可 以利用这一点实现稀疏? • 而当我们试图用 malloc 分配一段 4TB 的 内存,却出错了,明明说是惰性分配的? • 这是因为 glibc 在操作系统上做了很多事,
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
Zadig产品使用手册使用手册赵梓Await-TreeRust面向开发开发者原生DevOps平台游人RustCCAtlasGraph陈明煜2023RustChinaConfC++高性性能高性能并行编程优化课件020508MySQL10
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩