积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(20)C++(13)Rust(5)系统运维(2)DevOps(2)数据库(1)Java(1)Go(1)MySQL(1)

语言

全部中文(简体)(22)中文(简体)(1)

格式

全部PPT文档 PPT(23)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 23 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 数据库
  • Java
  • Go
  • MySQL
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    C++11 开始的多线程编 程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业)
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    点 。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。 • 小彭老师经验公式: 1 次浮点读写 ≈ 8 次浮点加法 • 如果矢量化成功( SSE ): 1 次浮点读写 ≈ 32 次浮点加法 • 如果 CPU 有 4 核且矢量化成功: 区别是浮点的乘法和加法基本是一样速度。 • L1/2/3 read 和 Main RAM read 的时间指的是 读一个缓存行( 64 字节)所花费的时间。 • 根据计算: 125/64*4≈8 • 即从主内存读取一次 float 花费 8 个 cycle , 符合小彭老师的经验公式。 • “right” 和“ wrong” 指的是分支预测是否成功。 多少计算量才算多? • 看右边的 func ,够复杂了吧?也只是勉勉强强超过一 二级缓存和三级缓存的大小附近。 • 因此,数据小到装的进二级缓存,则最大带 宽就取决于二级缓存的带宽。稍微大一点则 只能装到三级缓存,就取决于三级缓存的带 宽。三级缓存也装不下,那就取决于主内存 的带宽了。 • 结论:要避免 mem-bound ,数据量尽量足 够小,如果能装的进缓存就高效了。 L2: 256 KB L3: 12 MB 缓存的工作机制:读 • 缓存中存储的数据结构:
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 第 0 章:从并发到并行 摩尔定律:停止增长了吗? • 晶体管的密度的确仍在指数增长,但处理器主 频却开始停止增长了,甚至有所下降。 • 很长时间之前我们就可以达到 2GHz ( 2001 年 8 月),根据 2003 年的趋势,在 2005 年 初我们就应该研发出 10GHz 的芯片。
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    我们不考虑韭菜情怀的话不用管,我们只需要指定架构的版本号是多少就行啦。 • 毕竟一个 72 这样一个单调的整数,听起来没有“高大上地致敬科学家们的名字以彰显其高 尚人文情怀的超绝境界”吸引投资人嘛。 第 1 章:线程与板块 三重尖括号里的数字代表什么意思? • 刚刚说了 CUDA 的核函数调用时需要用 kernel<<<1, 1>>>() 这种奇怪的语法,这里面 的数字代表什么意思呢? • 不妨把 <<<1 时所用 GPU 的线程数量。 • GPU 是为并行而生的,可以开启很大数量的 线程,用于处理大吞吐量的数据。 获取线程编号 • 可以通过 threadIdx.x 获取当前线程的编 号,我们打印一下试试看。 • 这是 CUDA 中的特殊变量之一,只有在 核函数里才可以访问。 • 可以看到线程编号从 0 开始计数,打印出 了 0 , 1 , 2 。这也是我们指定了线程数 量为 3 的缘故。 获取线程数量 • 还可以用 blockDim.x 获取当前线程数量 ,也就是我们在尖括号里指定的 3 。 • 可是为什么叫 blockDim ?我觉得应该叫 threadNum 才比较合理? • 小彭老师也这么觉得,可能是历史遗留下 来的问题,就不追究了。 线程之上:板块 • CUDA 中还有一个比线程更大的概念,那就是板 块( block ),一个板块可以有多个线程组成。这
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 Rust 异步并发框架在移动端的应用 - 陈明煜

    mobile environment Rust 异步机制 Asynchronous Rust 异步并发框架是许多大型应用、系统具备的底层能力。 区别于多线程编程模型,它带来以下优势:  任务调度颗粒度更小,充分利用线程资源  更可控的线程数  单个任务资源占用:几十 KB -> 几百 Byte  任务切换时间 : 10 微秒 -> 100 纳秒 Rust 语言并没有提供异步并发框架, 并非异步运行时。它通过同步 多线程模型提供了并行迭代器功能, 适用于处理 CPU 密集型计算任务 rayon 现有框架无法完美适配移动端(一) Core Thread Thread Worker Worker task task Local queue Local queue Tokio 采用了如右图这种 GMP 模式: • 一核可以绑定多线程,每个线程拥有一个 Worker ,每个 ,每个 Worker 拥有一个任务队列 • 但线程拥有相同优先级 • Worker 只持有一个本地 FIFO 队列 移动端诉求:优先级 • 任务区分优先级: UI 显示 vs 后台下载 • 大小核调度 Incompatibility of the third party Runtime with Mobile 现有框架无法完美适配移动端(二) 移动端诉求:易用性 • IO 密集性任务与 CPU
    0 码力 | 25 页 | 1.64 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    解决:使用互斥量和原子变量 暴力解决方案就是用 std::mutex 避免多个线程同时访问。 然而这样会严重影响性能,锁和原子多了,就根本并行不起来。 教科书式的解决:二次判断法 这样如果 block 已经非空,则可以不用上锁,减少上锁次数。 如果 block 为空,则上锁;再次检测是否为空,空则分配内存, 非空说明其他线程已经帮我分配好了,直接退出。 结果反而还变慢了……所以有时候教科书(如 Concurrency std::mutex 会切换到操作系统内核中去调度 ,非常低效。而 tbb::spin_mutex 则是基于硬件原子指令的,完全 用户态的实现。区别: std::mutex 的陷入等待会让操作系统挂起 该线程,以切换到另一个;而 tbb::spin_mutex 的陷入等待是通过 不断地 while (locked); 这样一个死循环不断轮询。对于我们高性 能计算而言 tbb::spin_mutex 更高效。其实 把写入过的块地址缓存起来,可以避免多次访问全局表的开销。缓存在访问 者 (accessor) 的成员 map 里。访问者对象被我用 OpenMP 标记为 firstprivate ,意味着这个 map 是线程局部的,因此对他的访问不需要加锁, 更快。 应用在刚刚的 SNode 系统中 std::unordered_map 不支持 omp parallel for 遍历…… tbb::concurrent_unordered_map
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) 测试一下加速了多少倍? 优化前: 优化后: 测试结果 SOA + unroll 的方案,比优化前快了 5 倍 ! 并行情况下最快的也是 SOA 。 单线程的 SOA + unroll 甚至略微超过了并 行版的 AOS !可见 OpenMP 并非万能膏 药,单线程的程序认真优化后一样打败无脑 并行。 结论: SOA 是针对这个案例最高效的数据排布格式 第 7 章: STL 容器 std::vector
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 JVM 内存模型

    Native Method Stack PC Register JVM Stack Native Method Stack 程序计数器、虚拟 机栈, native 栈 为线程私有 堆为线程共享 方法区为线程共享 Eden From Survivor To Survivor 新生代 Old Space 老年代
    0 码力 | 1 页 | 48.42 KB | 1 年前
    3
  • ppt文档 Rust分布式账务系统 - 胡宇

    Sourcing ● 针对读场景,写场 景分别优化 ● 稳定的底层 API ● 灵活的顶层 API ● 树状结构 ● 聚合查询 ● 正确性:内存安全,线程安全 ● 可靠性: Raft 共识算法 raft-rs ● 高性能:关键路径无锁单线程 顶层架构 ● Gateway 路由层 ○ 业务 API 到底层 API 的翻 译 ○ 产生转账计划 ● Marker 事务层 ○ 使用业务 将 events 送入 Raft 共识,等待 events 被多数节点保存 ● 3. 处理被共识的 events ,更新状态机 (账户表) ○ 去重 & 更新余额 ○ 关键路径采用无锁单线程 账户层: Auticuro 分布式账务系统 1 2 3 4 ● 1. 接受转账请求,转换成 events ● 2. 将 events 送入 Raft 共识,等待 events 被多数节点保存
    0 码力 | 27 页 | 12.60 MB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    sort_buffer_size 512K 128M 每个线程的排序缓存大小,一般按照内存可 以设置为 2M 以上,推荐是 16M ,该选项对 排序 order by , group by 起作用 record_buffer 128K 64M 每个进行一个顺序扫描的线程为其扫描的每 张表分配这个大小的一个缓冲区,可以设置 为 2M 以上 table_cache 64 1024 为所有线程打开表的数量。增加该值能增加 mysqld
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件05070608陈明煜2023RustChinaConf1004figjavamemoryarchpptx胡宇rust分布布式分布式账务系统MySQL
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩