积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(47)云计算&大数据(44)Service Mesh(23)Python(22)综合其他(14)人工智能(13)系统运维(9)云原生CNCF(9)前端开发(8)数据库(8)

语言

全部中文(简体)(88)英语(21)中文(繁体)(14)zh(2)中文(简体)(2)[zh](1)西班牙语(1)zh-cn(1)

格式

全部PDF文档 PDF(130)
 
本次搜索耗时 0.549 秒,为您找到相关结果约 130 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • Service Mesh
  • Python
  • 综合其他
  • 人工智能
  • 系统运维
  • 云原生CNCF
  • 前端开发
  • 数据库
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • zh
  • 中文(简体)
  • [zh]
  • 西班牙语
  • zh-cn
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 亿联TVM部署

    0 码力 | 6 页 | 1.96 MB | 6 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    《Deepseek R1 本地部署完全⼿册》 版权归:HomeBrew Ai Club 作者wechat:samirtan 版本:V2.0 更新⽇期:2025年2⽉8⽇ ⼀、简介 Deepseek R1 是⽀持复杂推理、多模态处理、技术⽂档⽣成的⾼性能通⽤⼤语⾔模型。本⼿册 为技术团队提供完整的本地部署指南,涵盖硬件配置、国产芯⽚适配、量化⽅案、云端替代⽅ 端替代⽅ 案及完整671B MoE模型的Ollama部署⽅法。 核⼼提示: 个⼈⽤户:不建议部署32B及以上模型,硬件成本极⾼且运维复杂。 企业⽤户:需专业团队⽀持,部署前需评估ROI(投资回报率)。 ⼆、本地部署核⼼配置要求 1. 模型参数与硬件对应表 模型参 数 Windows 配置要求 Mac 配置要求 适⽤场景 1.5B - RAM: 4GB - GPU: 集成显卡/现代CPU 24GB - GPU: RTX 3090(24GB VRAM) - 存储: 20GB - 内存: 32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B) 671B
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 在Kubernetes上部署高可用的Service Mesh监控

    在 k8s 上部署高可用的 service mesh 监控 pctang@caicloud.io 唐鹏程 才云科技TOC Solving issues in a new way Monitoring your service mesh Old-school monitoringPrometheus + Kubernetes ● A time series based monitoring
    0 码力 | 35 页 | 2.98 MB | 6 月前
    3
  • pdf文档 TiDB v8.2 中文手册

    · · · · · · · · · · · · 63 3.1.1 部署本地测试集群 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63 3.1.2 在单机上模拟部署生产环境集群 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 437 5 部署标准集群 453 5.1 TiDB 软件和硬件环境建议配置 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 459 5.2.1 在 TiKV 部署目标机器上添加数据盘 EXT4 文件系统挂载参数 · · · · · · · · · · · · · · · · · · · · · · · · · 459 5.2.2 检测及关闭系统 swap·
    0 码力 | 4987 页 | 102.91 MB | 10 月前
    3
  • pdf文档 TiDB v8.4 中文手册

    · · · · · · · · · · · · 79 3.1.1 部署本地测试集群 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 79 3.1.2 在单机上模拟部署生产环境集群 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 504 5 部署标准集群 520 5.1 TiDB 软件和硬件环境建议配置 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 526 5.2.1 在 TiKV 部署目标机器上添加数据盘 EXT4 文件系统挂载参数 · · · · · · · · · · · · · · · · · · · · · · · · · 526 5.2.2 检测及关闭系统 swap·
    0 码力 | 5072 页 | 104.05 MB | 10 月前
    3
  • pdf文档 TiDB v8.5 中文手册

    · · · · · · · · · · · · 83 3.1.1 部署本地测试集群 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 83 3.1.2 在单机上模拟部署生产环境集群 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 508 5 部署标准集群 524 5.1 TiDB 软件和硬件环境建议配置 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 530 5.2.1 在 TiKV 部署目标机器上添加数据盘 EXT4 文件系统挂载参数 · · · · · · · · · · · · · · · · · · · · · · · · · 530 5.2.2 检测及关闭系统 swap·
    0 码力 | 5095 页 | 104.54 MB | 10 月前
    3
  • pdf文档 Nacos架构&原理

    的崛起,微服务多个模块逐步被划分,包括注册中心、配置中心,如果从 产品定位上,期望定位简单清晰,利于传播,我们需要分别开源我们内部产品,这样又会分散我们 品牌和运营资源。另外大部分客户没有阿里这么大的体量,模块拆分过细,部署和运维成本都会成 倍上涨,而且阿里巴巴也是从最早⼀个产品逐步演化成 3 个产品的,因此我们最终决定将内部三个 产品合并统⼀开源。定位为:⼀个更易于构建云原生应用的动态服务发现、配置管理和服务管理平 在系统开发过程中通常会将⼀些需要变更的参数、变量等从代码中分离出来独立管理,以独立的配 置文件的形式存在。目的是让静态的系统工件或者交付物(如 WAR,JAR 包等)更好地和实际的物 理运行环境进行适配。配置管理⼀般包含在系统部署的过程中,由系统管理员或者运维人员完成这 个步骤。配置变更是调整系统运行时的行为的有效手段之⼀。 配置管理 (Configuration Management) 在 Nacos 中,系统中所有 (zhangsan、lisi、wangwu)。同样会生成对应的 Namespace Id。然后使用 Group 来区分不 同环境的配置。如下图所示: 27 > Nacos 架构 配置存储模型(ER 图) Nacos 存储配置有几个比较重要的表分别是:  config_info 存储配置信息的主表,里面包含 dataId、groupId、content、tenantId、encrypt edDataKey
    0 码力 | 326 页 | 12.83 MB | 10 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 5均能基于分析结果提供多种可视化图表绘制方案,但都需要依靠运行 Python代码才能完成绘图任务,部分代码会出现错误 Open AI o3mini 能够直接调用DALLE,根据分析结果和任务需求高效绘制各类可视化图 表,部分较为复杂的图表可能出现数据错误或无法生成的情况。 Claude 3.5 sonnet 暂时不能直接绘制出可视图表,需要将绘图 代码复制到本地运行。 Kimi k1.5 结合数据样本和分析结果,提供多种可视化 船票等级的票价分布) DeepSeek R1 能够结合数据样本和分析结果,提供多种可 视化图表绘制方案,但暂时不能直接绘制出 可视图表,需要将对应的绘图代码复制到本 地运行制作图表。  柱状图(生还者和遇难者的比例、按船舱等级分类的生还情况) 结论 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 DeepSeek
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 2024 中国开源开发者报告

    本。开发者免费下载大模型以后,会在自己的计算机资源上进行大模型应用的开发和调试。大模 型厂商提供一些技术支持即可。同时因为大模型运行在本地,开发者在构建大模型应用时,为了 物理部署上的便利,很可能会在应用与模型之间创造出物理部署上的耦合性。 当然这种“开源策略”不是进攻的方法,而是“先为不可胜,以待敌之可胜”。目标是以最 小的代价,尽可能多地消耗闭源对手的资源与心气。 顾钧 资深开发者社区运营专家,目前担任杭州映云科技 无商业限制的基座的可能性也很高。小应 用开发商很可能很容易获得一个低成本 serving 的“量化小基座”。 “7B”是一个 magic number!无论是 RAG 里的向量表征模型,还是文生图、文本识别 (OCR)、语音合成(TTS)、人脸识别等等垂直领域,一个 1B~7B 的小模型已经可以满足很 多生产、应用需要,并且效果也在逐步推高【8,9,10】。这些模型,作为智能体的“三头六臂”, 软件研发应 用大模型国内现状调研报告》,多数团队在 10-40%之间,如图 1 所示。 图 1 大模型(LLM)在编程上的应用及其生成代码的采纳率 在 2024 年,我们还看到了“AI 程序员”Devin 的诞生,Devin 能够独立完成复杂的编码和 调试任务、自主查找和修复代码库中的错误,构建和部署应用程序。在 SWE-bench 编码基准测 试中,Devin 能够解决 GitHub 中
    0 码力 | 111 页 | 11.44 MB | 8 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    PDF 作者:郭震 2025.2.3 目录 1 本地部署并运行 DeepSeek . . . . . . . . . . . . . . . . . . . . . . 2 1.1 为什么要在本地部署 DeepSeek . . . . . . . . . . . . . . . . . 2 1.2 DeepSeek 本地部署三个步骤 . . . . . . . . . . . . . 11 4 参考文献 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1 1 本地部署并运行 DeepSeek 1.1 为什么要在本地部署 DeepSeek 在本地搭建大模型(如 DeepSeek)具有多个重要的优势,比如: 1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 R1,开源免费,性能强劲 • 本教程搭建方法 零成本,不需花一分钱。 • 为了照顾到大部分读者,推荐的搭建方法已将电脑配置要求降 到最低,普通电脑也能飞速运行。 1.2 DeepSeek 本地部署三个步骤 一共只需要三步,就能做到 DeepSeek 在本地运行并与它对话。 第一步,使用的是 ollama 管理各种不同大模型,ollama 比较直接、干净, 一键下载后安装就行,安装过程基本都是下一步。
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
共 130 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 13
前往
页
相关搜索词
亿联TVM部署DeepseekR1本地完全手册Kubernetes上部署高可用ServiceMesh监控TiDBv8中文Nacos架构原理清华大学DeepSeekDeepResearch科研2024中国开源开发开发者报告图解10PDF
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩