Curve元数据节点高可用© XXX Page 1 of 30 Curve元数据节点高可用© XXX Page 2 of 30 1. 需求 2. 技术选型 3. etcd clientv3的concurrency介绍 3.1 etcd clientV3的concurrency模块构成 3.2 Campaign的流程 3.2.1 代码流程说明 3.2.2 举例说明Campagin流程 3.3 Observe的流程 异常情况4:Etcd集群的follower节点异常 4.2.7 各情况汇总 1. 需求 mds是元数据节点,负责空间分配,集群状态监控,集群节点间的资源均衡等,mds故障可能会导致client端无法写入。 因此,mds需要做高可用。满足多个mds, 但同时只有一个mds节点提供服务,称该提供服务的mds节点为主,等待节点为备;主节点的服务挂掉之后,备节点能启动服务,尽量减小服务中断的时间。 需要解决的问题就是:如何确定主备节点。 需要解决的问题就是:如何确定主备节点。 2. 技术选型 提供配置共享和服务发现的系统比较多,其中最为大家熟知的就是zookeeper和etcd, 考虑当前系统中mds有两个外部依赖模块,一是mysql, 用于存储集群拓扑的相关信息;二是etcd,用于存储文件的元数据信息。而etcd可以用于实现mds高可用,没必要引入其他组件。 使用etcd实现元数据节点的leader主要依赖于它的两个核心机制:0 码力 | 30 页 | 2.42 MB | 6 月前3
新一代云原生分布式存储分布式存储的要素 02 03 04 Ceph 架构简介 | 场景介绍 | 使用中的问题 Curve 架构简介 | 数据对比 | 应用情况 FAQ 答疑存储的发展 互联网时代,数据大爆炸 大型主机 成本高 单点问题 扩容困难 各存储设备通过网络互联 大规模 弹性扩容 底层构建在分布式存储之上 云的概念 成本:共用基础设施 弹性:随意扩缩容 速度:更快的构建发布业务 •服务质量要求:数据不能丢、服务随时可用、弹性扩缩容 要什么 •成百上千台存储节点 •磁盘故障、机器故障、网络故障概率性发生 有什么 分布式存储系统需要满足接口需求,并且有持续监控、错误检测、容错与自动恢复的能力 以达到高可靠、高可用、高可扩分布式存储的要素 要 素 拆 解 数据分布 —— 无中心节点/中心节点 均 衡 地址空间的每段数据会分布在不同机器的磁盘上,如 无中心节点:哈希算法 INPUT (Offset, Len) HASH HASH mod 72 (DiskNums) (0, 4MB) 163342856 2 58 (4MB, 8MB) 759463473 9 3 (8MB, 16MB) 342165799 5 51 • 映射信息无需记录,直接通过计算获得 • 伪随机算法在服务器数量特别大的时候接近均衡 • 节点故障(DiskNums)变更会涉及其他数据的迁移0 码力 | 29 页 | 2.46 MB | 6 月前3
Curve质量监控与运维 - 网易数帆监控——直观地展示Curve运行状态; 运维——保障Curve始终稳定高效运行。 质量 ✓ 质量管理体系(设计、开发、review、CI) ✓ 测试方法论(单元测试、集成测试、系统测试) 监控 ✓ 监控架构 ✓ 指标采集、后端处理、可视化展示 运维 ✓ 运维特性 (易部署、易升级、自治) ✓ 运维工具(部署工具、管理工具) 4/33背景 01 02 03 04 Curve质量控制 Curve监控体系 发 工作。 小需求 实现思路 开发 大需求 设计文档 POC 开发 7/33设计文档规范 设计文档需要具备以下内容: 修订记录 审批记录 系统介绍 相关调研 架构 重要流程 关键算法 接口 数据库设计 非功能特性设计 参考文献 8/33代码编写规范 Curve代码编写规范遵循Google Style Guides(https://google Curve所有代码均在github托管。新 代码需要通过CI测试和code review才 能合入master分支,确保新合入代码 的功能、正确性、规范性等都有基本 保障;而每日运行的dailybuild测试在 CI测试基础上增加了异常自动化测试 和混沌测试,确保master分支代码的 bug尽可能早地暴露出来。 通过这种流程,curve可以在一定 程度上保证master分支的稳定性。 master 10/33版本管理0 码力 | 33 页 | 2.64 MB | 6 月前3
Raft在Curve存储中的工程实践稳定性挑战 • 算力平台kubernetes的迅速发展 • AI/大数据业务的快速增长 • 存储使用Ceph文件存储/HDFS • 成本/性能挑战 Curve块存储和文件存储均采用raft协议整体架构 • 对接OpenStack平台为云主机提供高性能块 存储服务 • 对接Kubernetes为其提供RWO、RWX等类 型的持久化存储卷 • 对接PolarFS作为云原生数据库的高性能存储 给其他的服务器,让他们复制这条⽇志。 3. 当这条⽇志条⽬被安全的复制,leader会应⽤这条⽇ 志条⽬到它的状态机中。 4. 然后把执⾏的结果返回给客户端。 • 提供命令在多个节点之间有序复制和执行,当多个节 点初始状态一致的时候,保证节点之间状态一致。 raft日志复制RAFT协议简介 raft配置变更 • 配置:加入一致性算法的服务器集合。 • 集群的配置不可避免会发生变更,比如替换宕机的机器。 照。BRAFT简介 • raft协议提出之后,涌现出了非常多的实现,比如etcd,braft,tikv等。 • braft是raft的一个实现,实现了raft的一致性协议和复制状态机,而且提供了一种通用的基础库。基 于braft,可以基于自己的业务逻辑构建自己的分布式系统。 • braft本身不提供server功能,需要业务自己实现状态机。 Node(一个raft实例) int init(const0 码力 | 29 页 | 2.20 MB | 6 月前3
CurveFS方案设计2021-03-23 李小翠 初稿(背景,调研,架构设计) 2021-03-30 李小翠 增加快照部分 2021-04-13 李小翠、陈威 补充元数据数据结构 2021-04-19 李小翠、吴汉卿、许超杰等 补充文件空间分配,讨论与确认 背景 调研 开源fs 性能对比 可行性分析 方案对比 对比结论 架构设计 卷和文件系统 元数据架构 文件系统快照 方案一:文件/目录级别快照 方案二:文件系统快照 urve是实现了块存储,向上提供块设备服务,CurveFS会基于此实现。第一阶段的目标是实现 满足数据库场景的文件接口。 调研 开源fs 当前对已有的开源分布式文件系统进行了调研,主要包括系统架构,元数据内存结构,元数据持久化,调研文档如下: chubaofs: ChubaoFS© XXX Page 3 of 14 1. 2. 3. moosefs: https://kms e/27909 性能对比 并对以上文件系统在相同环境进行了元数据节点性能测试: 。测试结果c开发的moosefs和fastcfs元数据性能远优于go开发的chubaofs和c开发的cephfs,理论上分析这个结果是合理的,分布式的元数据设 调研测试 计会涉及到多次rpc的交互。这里需要确认的一点是:我们需要怎样的元数据节点的性能? 可行性分析 方案对比 根据上述调研和测试结果,我们考虑了三种curvefs的元数据设计方案:0 码力 | 14 页 | 619.32 KB | 6 月前3
Curve核心组件之chunkserverhttps://github.com/opencurve/curveCURVE基本架构 01 02 03 04 ChunkServer架构 ChunkServer核心模块 新版本ChunkServer性能优化CURVE基本架构 • 元数据节点 MDS • 管理和存储元数据信息 • 感知集群状态,合理调度 • 数据节点 Chunkserver • 数据存储 • 副本一致性,raft • 对数据增删改查 • 快照克隆服务器CURVE基本架构 01 02 03 04 ChunkServer架构 ChunkServer核心模块 新版本ChunkServer性能优化Curve ChunkServer是数据节点, 对外提供数据读写和节点管理功 能,底层基于ext4文件系统,操 作实际的磁盘。 ChunkServer架构ChunkServer通过RPC网络层与client, t, MDS,其他ChunkServer通信。RPC 网络层是由brpc框架去完成的。包 括读写socket,rpc协议解析等。 ChunkServer架构RPC Service层是对外提供的一些RPC服 务的接口。包含的RPC服务有: • ChunkService。IO相关操作 • CliService。成员变更相关操作 • CopySetService。创建copyset等操 作0 码力 | 29 页 | 1.61 MB | 6 月前3
Curve设计要点• 去中心节点设计在集群不均衡的情况下需要人工运维 • 基于通用分布式存储构建上层存储服务背景 01 02 03 04 总体设计 系统特性 近期规划基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 数据一致性基本架构 • 元数据节点 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 副本一致性 • 客户端 Client 对元数据增删改查 对数据增删改查基本架构 • 快照克隆服务器 独立于核心服务 储到支持S3接口的 对象存储,不限制数量 异步快照、增量快照 从快照/镜像克隆 ( lazy/非lazy ) 从快照回滚数据组织形式 • 底层 可用性 5、返回结果 user 3、查询leader节点 4、向leader cs发起请求 1. 用户发起请求; 2. Client 向 mds 查询请求的元数据, 并缓存到本地,请求转换为对 chunk 的请求 3. Client 向 chunkserver 查询 chunk 所在的 copyset的leader Chunkserver节点; 4. Client 向 leader 发送读写请求0 码力 | 35 页 | 2.03 MB | 6 月前3
Curve核心组件之Client - 网易数帆https://github.com/opencurve/curveCURVE基本架构 01 02 03 04 Client总体介绍 热升级NEBD总体介绍 新版本Client/NEBD性能优化CURVE基本架构 • 元数据节点 MDS • 管理和存储元数据信息 • 感知集群状态,合理调度 • 数据节点 Chunkserver • 数据存储 • 副本一致性,raft • 客户端 客户端 Client • 对元数据增删改查 • 对数据增删改查 • 快照克隆服务器CURVE基本架构 01 02 03 04 Client总体介绍 热升级NEBD总体介绍 新版本Client/NEBD性能优化 QEMU、Curve-NBD:上层应用 通过链接curve-client使用curve提供的服务 FileManager:提供接口,记录已挂载卷 FileInstance:对应一个已挂载的卷 unkserver进行通信 前者负责IO请求 后者负责获取复制组(copyset)的leader MDSClient:负责与MDS交互,挂卸载卷、获取元数据信息 CLIENT整体架构QEMU: 实现了QEMU block与Client的对接层 向cinder/glance提供了Python API https://github.com/opencurve/curve-qemu-block-driver0 码力 | 27 页 | 1.57 MB | 6 月前3
副本如何用CLup管理PolarDB从业近20年,拥有20年数据库、操作系统、存储领 域的工作经验,历任过阿里巴巴高级数据库专家、 网易研究院开发专家,从事过阿里巴巴Greenplum、 PostgreSQL、 MySQL数据库的架构设计和运维。 既熟悉数据库的,是最早的Oracle 9i的OCP,又懂开 发,精通C、python。 唐成(网名osdba)-3- @ 专业的PostgreSQL数据库管理平台 CLup介绍CLup产品介绍 L的管理 架构说明 有一台机器上部署的CLup管理节点,这个管 理节点提供WEB管理界面统一管理所有的 PostgreSQL/PolarDB数据库。 每台数据库主机上部署clup-agent。CLup管 理节点通过clup-agent来管理这台机器上的 PostgreSQL/PolarDB数据库。 clup-server 数据中心1 CLup管理节点1 clup-server clup-server 数据中心2 CLup管理节点2 clup-server 数据中心1 CLup管理节点2 高可用机制自动切换 数据一致性保证 数据可用性 提供读写VIP 读写高可用 读写分离 多个读库之间负载均衡 负载均衡 读线性扩展 支持分库分表 高扩展性 写 VIP 读 VIP PG (Primary) PG (Standby1)0 码力 | 34 页 | 3.59 MB | 6 月前3
Curve核心组件之mds – 网易数帆com/opencurve/curve 概述整体架构 01 02 03 MDS各组件详细介绍 Q&A基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 副本一致性 • 客户端 Client 对元数据增删改查 对数据增删改查 • 快照克隆服务器MDS各个组件 MDS是中心节点,负责元数据管理、集群状态收集与调度。MDS包含以下几个部分: 减少复制组数量:如果一个数据节点存在 256K个复制组,复制组的内存资源占用将会非常恐怖;复制组之 间的通信将会非常复杂,例如复制组内Primary给Secondary定期发送心跳进行探活,在256K个复制组的情况 下,心跳的流量将会非常大;而引入CopySet的概念之后,可以以CopySet的粒度进行探活、配置变更,降低 开销。 3. 提高数据可靠性:在数据复制组过度打散的情况下,在发生多个节点同时故障的情况下,数据的可靠性会受 cs9, cs12)COPYSET client MDS leader Chunk server 1、发起请求 2、查询元数据 5、返回结果 5、返回结果 user 3、查询leader节点 4、向leader cs发起请求 1. 用户发起请求(fd, offset, length) ; 2. Client 向 mds 查询请求的元数据, 并缓存到本地,请求转换为对 chunk0 码力 | 23 页 | 1.74 MB | 6 月前3
共 26 条
- 1
- 2
- 3













