云原生虚拟数仓 PieCloudDB 的架构和关键模块实现Confidential • 在世界范围内的统计信息显示,Nosql和数据湖已经不在数据分析 领域占有主要市场 • Nosql和数据湖缺少很多支持数据分析的重要特性 o 缺少在高并发场景下的隔离性和一致性 o 和现有的BI工具很难集成 • 关系型数据库已经重新成为数据分析的主要平台 NoSQL 和数据湖已经不再是数据分析的主要平台 @2022 OpenPie. All rights reserved 专用引擎/工具(例如图形数据库)通常难以与记录系统集成,限制 了分析和创新的操作化 NoSQL和数据湖为基础的基础设施需要的分析工具不容易集成和部署 @2022 OpenPie. All rights reserved. OpenPie Confidential • 公有云无限的计算池可以提供理想的弹性计算资源 • 公有云廉价且无限容量的对象存储 • 传统数仓缺乏弹性和存算分离,难以利用公有云的优势 以关系型数据库为基础的数据仓库很难适应云环境 数据的移动 • Segment节点不直接访问系统表,事务和锁 • 在扩张时只需要在新的虚拟机节点上部署二进制并向元数据服务注册 @2022 OpenPie. All rights reserved. OpenPie Confidential • Master 节点和 FoundationDB 通过事务的方式协同实现了分布式的事务和锁 • 系统表以 mstore 的方式存储在 FoundationDB0 码力 | 43 页 | 1.14 MB | 1 年前3
PieCloudDB Database 社区版集群安装部署手册 V2.1PieCloudDB Database 社区版集群部署和使用手册 版本:V2.1 2023 年 03 月 08 日 目录 1. 集群规划 .......................................................................................................... ............................................................................ 4 2. PIECLOUDDB 和 K8S 一起部署方案 ........................................................................................... .................................................................................... 5 2.3 更新系统包和依赖包 ................................................................................................0 码力 | 42 页 | 1.58 MB | 1 年前3
PieCloudDB Database V2.8 Release Note1 Release Note 最新版本: V2.8 发布日期: 2023 年 10 月 内 核 l 回收站功能 实现回收站来跟踪逻辑上被删除(TRUNCATE/DROP/ALTER 等)的表,这些 表对应的 S3 Block 文件在超过保留期限后会被 autovacuum 删除。 l PieCloudDB 全局缓存系统 n 支持在计 以兆字节为单位。 n 新增建表选项 num_stat_col,控制文件内统计列数,为每个 JANM 文件 节省 CPU 和元数据大小。默认值为 32,与 INDEX_MAX_KEYS 相同。 3 l 外表 FDW 相关 n 新增 raw_fdw 外表接口,支持在协调节点和工作节点上执行,以原始字 节(bytea)读取文件。 n 为外表启用部分聚合能力,支持并行聚集下推。 fdb_max_retry(替代原 MaxRetry 功能),默认值设置为 50。 l 临时表相关 n 新增 GUC 参数 pdb_temptable_local_limit_filesize 和 pdb_temptable_local_limit_filenum,控制临时表的数据文件溢出到远 端存储。 n 支持 autovacuum 清理孤立的临时表。 l pgaudit 插件0 码力 | 4 页 | 144.49 KB | 1 年前3
大模型时代下向量数据库的设计与应用目前在拓数派负责向量数据库PieCloudVector产品,聚焦于大模型 与大数据领域。拥有多年数据库内核研发和配套解决方案架构经验, 在加入拓数派前曾就职于开源大数据平台Greenplum团队,担任外部 数据源访问框架,对象存储访问扩展,ETL工具等产品模块的研发, 并曾参与PostgreSQL多个版本的代码贡献,拥有丰富的存储模块核心 开发和性能优化等实践经验。 邱培峰 拓数派向量数据库负责人 拓数派:大模型数据计算系统先行者 队; • 国内虚拟数仓和eMPP技术提出者,不断在数据计算引擎方向进 行创新,全面拥抱AI技术趋势。 目录 • 大模型应用和RAG • 向量近似搜索和向量数据库 • PieCloudVector架构设计与挑战 • 案例介绍 大模型 检索增强生成(RAG) 使用大模型可以构造问答,聊天等应用,但同时也存在以下问题 • 数据时效 - LLM训练数据有截止日期,不包含最新信息,无法准确回答相关信息 确回答相关信息 • 私域数据 - LLM训练数据多来源于公开渠道,无法接触到私域数据,对特定领域的生成任务质量不高。 • 长期记忆 - LLM本身却没有长期记忆能力,对长时间交互的上下文 Query LLM Response 检索增强生成(RAG) • 将辅助增强数据通过embedding过程转换为向量,加载到向量数据库中并做索引 • 对每个用户输入同样通过embedding过程得到向量,从向量数据库中搜索距离相近数据0 码力 | 28 页 | 1.69 MB | 1 年前3
PieCloudDB Database V2.1 版本说明Release Note 版本号:V2.1 发布日期:2022 年 10 月 内 核 • 聚集下推功能得到增强:通过把聚集操作下推到连接操作之前去执行,极大的减 少连接操作需要处理的数据量,使得查询性能显著提升。 • 实现了 Block Skipping 的优化机制:数据库运行查询语句时,通过计算每个块 (block)中列聚集信息,在执行期间跳过非必要的数据块,减少数据读取量提高查询性 PieCloudDB 的计算层,各个计算节点针对元数据都设计了 多层缓存结构。 其中,针对元数据,PieCloudDB 实现了元数据层全新的缓存机制,有效减少了访问元 数据服务器带来的网络通信开销和元数据服务器的负载,提高元数据访问的速度。 • 可观察性增强:可得到更多的查询时系统的统计信息,包括元数据管理、S3 等。 • Vacuum 优化:在元数据层通过快速过滤不需要 vacuum 的数据,从而实现 的数据,从而实现 vacuum 加速。 • 存储引擎 简墨(JANM) 异常处理的优化: 避免各种异常情况下数据残留。 • 简墨(JANM)分布式处理增强:更高效的元数据采集和分发,提升用户查询响 应时间,降低系统负载 • 简墨(JANM)动态分配读取文件增强 dispatch 性能:此优化将动态的分配要 读取的文件给各个执行节点,降低查询的启动代价。 •0 码力 | 3 页 | 257.15 KB | 1 年前3
云原生虚拟数仓PieCloudDB Database产品白皮书服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录, MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1亿条记录。数据计算时,所有机器同时并行计算,理论上最高可以 把计算时间降低到单机部署的 1/n(n为机器数量),节省了海量数据的处理时间。 传统数据仓库的计算和存储是紧密耦合的,计算资源和存储资源按某一比例强绑定,因此用户在扩容时,必须同时扩 容计算资源和存储资源,在扩缩容、运 环境资源利用率,无论是存储或是计算资源往往都不尽人意。随着存储和工作负载需求的日益增长,面临数据库的扩 容和升级时,由于传统数据仓库架构存储和计算的紧密耦合,往往需要企业花费巨大的运维和时间成本,且操作繁 琐。 木 桶 效 应 传统 MPP 数据仓库架构存在“木桶效应”,集群整体执行速度取决于最“短板的”节点的性能。因此,一个节点的 表现往往会 “拖垮”整个集群的性能,导致查询速度变慢。 随着时间的推移,业务的增长,企业往往需要在1-2年后 对集群增加计算节点,此时,无论新的计算节点性能如何好,集群总体性能都会受制于老的节点。因此真实生产环境 中,常常见到客户在需要扩容时,采取重新新建集群的方式。 数 据 孤 岛 随着业务的发展,数据量的增加,和信息化建设的需求,企业会为不同部门建设相应的业务信息化系统。我们在真实 客户场景中,常常看到很多企业有成百上千个集群,但这些集群的元数据往往都是一样的。这种情况下,很多元数据 会在不同集群间存在不0 码力 | 17 页 | 2.02 MB | 1 年前3
PieCloudDB Database 产品白皮书 > 岛 网 ioor mauaeaa 和 i Gartner: 数据库中国市场指南 传统数仓的痛点 很多受欢迎的数据库仓库均为分布式数据库,而典型 分布式数据库系统大多是 MPP (大规模并行计算) 架构。 MPP 架构的数据库以 PC 服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录 MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1 服务器的硬盘上分布1 录。数据计算时,所有机器同时并行计算,理论上最 把计算时间降低到单机部署的 1/n (n为机器数量) ,节省了海量数据的处理时间。 传统数据仓库架构 然而,随着数据量的不断尝升,企业对数据仓库的要求也越来越高,在使用过程中,传统 MPP 数据库解决方案迎来 了一系列的瓶颈: 传统数据仓库的计算和存情是| 容计算资源和存储资源,在扩缩容、运维、迁移上都存在一, 报表结! 传统数据仓库无法及时扩 环境资源利用率,无论是存储或是计算资源往往都不尽人意。随着存储和工作负载需求的日益增长,面临数据库的扩 容和升级时,由于传统数据仓库架构存储和计算的紧密耦合,往往需要企业花费巨大的运维和时间成本,且操作繁 琐。 木桶效应 传统 MPP 数据仓库架构存在“木桶效应”,集群整体执行速度取决于最“短板的”节点的性能。因此,一个节点的 表现往往会 “拖幸”整个集群的性能,导致查询速度变慢。 随卷时间的推移,业务的增长,企业往往需要在1-2年后0 码力 | 17 页 | 2.68 MB | 1 年前3
πDataCS赋能工业软件创新与实践杭州拓数派科技发展有限公司 ,简称“OpenPie” 企业简介 l OpenPie是立⾜于国内的基础数据计算领域⾼科技创新机构; l 拥有强⼤的数据库内核研发团队、数据科学团队和数字化 转型团队; l 国内虚拟数仓和eMPP技术提出者,不断在数据计算引擎⽅ 向进⾏创新,全面拥抱AI技术趋势。 企业⽂化 使命:数据计算,只为新发现 愿景:成为立⾜中国基础数据计算领域的全球顶级⾼科技创新机构 价值观:以⼈为本、开放创新、拥抱变化、诚信正直 OpenPie. All rights reserved. OpenPie Confidential 国际顶级创始团队 原 Pivotal 中 国 领 团 队 和 原 Greenplum产品及社区核⼼成员 均已加⼊拓数派。成员毕业自 CMU、北⼤、清华和科⼤少年班 等顶级学术机构,并有成员获有 奥赛奖牌。 郭罡(Paul Guo) 合 伙 ⼈ & C T O • 中国科技⼤学少年班 • 18年+底层基础软件领域开发经验 18年+底层基础软件领域开发经验 • 原Greenplum首席内核架构师 • Apache HAWQ PMC成员 陆公瑜(Brian Lu) 合伙⼈&COO • 英国约克⼤学 • 15年+产品⽣态建设和运营管理经验 • 原Greenplum中国社区发起⼈ • Greenplum社区从0到万 冯 雷(Ray Von) 创 始 ⼈ & C E O • 浙江物理奥赛银牌得主 • 北京⼤学物理经济学双学位0 码力 | 36 页 | 4.25 MB | 1 年前3
云原生数据库PieCloudDB 性能优化之路Discoveries”「数据计算,只为新发现」为使命, 成立后的短短10个月时间内,完成了包括头部产业基金、东吴证券、元 禾重元和政府科创平台在内的连续三轮战略融资。 旗下云原生分析型数据库 PieCloudDB,以云计算架构为设计基础,首 创全新 eMPP 分布式技术,帮助企业建立竞争壁垒的同时,实现数据价 值最大化,并在新基建中承担可靠和可控的世界级云数据库底座。 PostgreSQL优化器简介 01 • 预处理阶段 • 通过逻辑上的等价变换,把查询树转换为更加简单高效的等式 • 分发约束条件,收集外连接信息等 • 扫描/连接优化阶段 • 主要处理扫描和连接操作 • 扫描/连接之外的优化阶段 • 主要处理除扫描和连接之外的其他操作,例如聚集、排序等 • 后处理阶段 • 主要把前面的处理结果转换成执行器期望的形式 • 简化表达式 • 简化连接树 • 把 IN,EXISTS foo -> Materialize -> Seq Scan on bar (5 rows) • 主要处理查询语句中FROM和WHERE部分 • 同时也会考虑到ORDER BY的信息 • 代价驱动 • 为基表生成扫描路径,并计算扫描路径的代价和结果集大小 • 搜索整个连接顺序空间,为连接操作生成连接路径 • O(n!) • 动态规划 • 遗传算法 • 考虑外连接对连接顺序的限制0 码力 | 26 页 | 711.44 KB | 1 年前3
PieCloudDB 的云原生之路Discoveries”「数据计算,只为新 发现」为使命,成立后的短短10个月时间内,完成了包括头部 产业基金、东吴证券、元禾重元和政府科创平台在内的连续三 轮战略融资。 旗下云原生分析型数据库 PieCloudDB,以云计算架构为设 计基础,首创全新 eMPP 分布式技术,帮助企业建立竞争壁垒 的同时,实现数据价值最大化,并在新基建中承担可靠和可控 的世界级云数据库底座。 IvorySQL开源数据库社区 与中国人民大学成立实习基地,打造 中国的云原生数据库世界级智力高地 11月 4月 获得元禾重元和东吴证券 Pre-A 轮投资 标志着企业进入快速成长期 拓数派 正式成立 成立杭州总部、北京研发中心、 上海全球品牌战略与生态发展中心 12月 获得腾讯投资第二轮持续加注投资 得到众多知名投资机构的关注和认可 蓬 勃 发 展 的 拓 数 派 引 领 数 据 计 算 时 代 的 到 来 云解决了什么? 借助于云上分布式存储,解耦存储 借助于云上虚拟化技术和之上的 IaaS,解耦 计算 池化资源,按需使用 基础软件尤其是数据平台上云已是大势所趋 用户专注于使用,运维等工作交给 IaaS/SaaS 厂商 IvorySQL开源数据库社区 上云≠云原生 弹性计算 智能化云原生平 台 多租户 • 产品要能支持存储资源和计算资源的分离 • 产品要能快速进行计算资源的弹性伸缩 IvorySQL开源数据库社区0 码力 | 47 页 | 1.80 MB | 1 年前3
共 20 条
- 1
- 2













