积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(15)PieCloudDB(15)

语言

全部中文(简体)(15)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 15 个.
  • 全部
  • 数据库
  • PieCloudDB
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PieCloudDB Database 产品白皮书

    iclrudpB 罗 罗 罗_ < B Database 本EMPP 基灿异并行计算) 的云原生虚拟数仓 产品白皮书 ENRANSGenpPie.com 20230penPieAIIRight Reserved, Openpie | PiecloudDB 基于eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 行业背景 数据量的爆发式增长 数据库的未来在云上 传统数仓的痛点 PieCloudDB 产品核心技术 PieCloudDB8 产品优势 关于OpenpPie 附录: 术语表 11 13 15 16 openpie | PiecloudDB 基于 eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 百岗 行业背景 石油是工业的血液,数据是数字经济的“石油”,数据分析则是石油精炼。 随着信息技术的发展,互联网应用的加速普及,人类进入了数字经济时代。进入二十一世纪以后,随着移动互联网技 一趋势靠拢。2020 年数据显示,云数据库已占据整体数据库市场份额的40%,2022年云数据库营收数据将占据数据 库整体市场的半数以上。 OpenpPie | PiecloudDB 基于eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 SN 中 Market Guide for DBMS, China
    0 码力 | 17 页 | 2.68 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓PieCloudDB Database产品白皮书

    PieCloudDB Database 基于 eMPP (弹性大规模并行计算)的云原生虚拟数仓 产品白皮书 www.OpenPie.com ©2023 OpenPie All Right Reserved . 行业背景 数据量的爆发式增长 数据库的未来在云上 传统数仓的痛点 云时代的数据处理要求 PieCloudDB,云原生虚拟数仓 很多受欢迎的数据库仓库均为分布式数据库,而典型的传统分布式数据库系统大多是 MPP(大规模并行计算)架构。 MPP 架构的数据库以 PC 服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录, MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1亿条记录。数据计算时,所有机器同时并行计算,理论上最高可以 把计算时间降低到单机部署的 1/n(n为机器数量),节省了海量数据的处理时间。 务信息化系统。我们在真实 客户场景中,常常看到很多企业有成百上千个集群,但这些集群的元数据往往都是一样的。这种情况下,很多元数据 会在不同集群间存在不一致的版本信息。此外,如果企业需要做跨集群的访问,往往非常困难,会造成数据孤岛的存 在。 运 维 成 本 对于传统 MPP 数仓,企业往往会需要配备运维人力,且对运维、开发人员要求高,需要相关人员掌握复杂的技术 栈,技术的更新迭代迅速
    0 码力 | 17 页 | 2.02 MB | 1 年前
    3
  • pdf文档 PieCloudDB:基于PostgreSQL的eMPP云原生数据库

    OpenPie Confidential 我们需要一个云原生大数据平台 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩容难 数据孤岛 元数据和用户数据跨集群 访问困难 运维成本 运维和DBA 传统分布式MPP架构痛点 @2022 OpenPie. All rights reserved. OpenPie Confidential 一个云原生实时大数据平台 友好的用户接口(WebSql, ODBC/JDBC driver等). 云原生 • 弹性计算资源(横向和纵向)、极速调整 • 共享用户数据(典型如廉价对象存储) • 共享元数据 • MPP架构:分布式,海量数据并行处理 @2022 OpenPie. All rights reserved. OpenPie Confidential Postgres 生态 PieCloudDB 重新打造 PostgreSQL @2022 OpenPie. All rights reserved. OpenPie Confidential 元数据管理的设计目标 实现多节点共同访问的数据存储 实现分布式锁 • 高可用和多集群 • Multi-master • 多机并发访问 • 分布式环境下的多版本 @2022 OpenPie. All rights reserved. OpenPie Confidential mstore
    0 码力 | 45 页 | 1.32 MB | 1 年前
    3
  • pdf文档 PieCloudDB 的云原生之路

    IvorySQL开源数据库社区 我们需要一个云原生大数据平台 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩容难 数据孤岛 元数据和用户数据跨集群 访问困难 运维成本 运维和DBA 传统分布式 MPP 架构痛点 IvorySQL开源数据库社区 PART 02 云原生数据库 PieCloudDB 简介 IvorySQL开源数据库社区 数据 分布式引擎 存储服务 透明数据加密 优化器 IvorySQL开源数据库社区 01 元数据管理 IvorySQL开源数据库社区 实现多节点共同访问的数据存储 实现分布式锁 • 高可用和多集群 • Multi-master • 多机并发访问 • 分布式环境下的多版本 元数据管理的设计目标 IvorySQL开源数据库社区 mstore — FoundationDB上的Catalog FoundationDB Key 的自然排序实 现索引 IvorySQL开源数据库社区 02 分布式引擎 IvorySQL开源数据库社区 计算 • MPP o 将一个单一计算任务在大量独立的计算机上并行执行。 • 多租户、多集群 • 弹性伸缩:集群大小、集群类型、集群数量 • 隔离性:不同租户、不同负载 • 高并发 • 高可用 • 可按使用量付费 IvorySQL开源数据库社区 计算
    0 码力 | 47 页 | 1.80 MB | 1 年前
    3
  • pdf文档 PieCloudDB云原生数仓虚拟化之路

    OpenPie Confidential 我们需要一个云原生大数据平台 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩容难 数据孤岛 元数据和用户数据跨集群 访问困难 运维成本 运维和DBA 传统分布式MPP架构痛点 @2022 OpenPie. All rights reserved. OpenPie Confidential 数据 计算 发现 @2022 OpenPie. All rights reserved. OpenPie Confidential 元数据管理的设计目标 实现多节点共同访问的数据存储 实现分布式锁 • 高可用和多集群 • Multi-master • 多机并发访问 • 分布式环境下的多版本 @2022 OpenPie. All rights reserved. OpenPie Confidential mstore 02 分布式引擎 @2022 OpenPie. All rights reserved. OpenPie Confidential 计算 • MPP • 将一个单一计算任务在大量独立的计算机上并行执行。 • 多租户、多集群 • 弹性伸缩:集群大小、集群类型、集群数量 • 隔离性:不同租户、不同负载 • 高并发 • 高可用 • 可按使用量付费 @2022 OpenPie. All
    0 码力 | 44 页 | 1.64 MB | 1 年前
    3
  • pdf文档 云原生数据库 PieCloudDB eMPP架构设计与实现

    愿景:安全可靠 使用简单 功能齐全 性能极致 传统分布式MPP架构痛点 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩缩容难 数据孤岛 元数据和用户数据跨集群 访问困难 运维成本 运维和DBA 我们需要一个云原生数据库 云解决了什么? 借助于云上分布式存储,解耦存储 借助于虚拟化技术和之上的IaaS,解耦计算 池化资源,按需使用 基础软件尤其是数据库软件上云已是大势所趋 driver等). 云原生 云中立 • 弹性计算资源(横向纵向)、极速调整 • 多集群是另外一个弹性的维度 • 共享用户数据(如按需付费的对象存储) • 共享元数据 • MPP架构:分布式,海量数据并行处理 • e代表弹性(elastic) 完善的Postgres生态 为什么选择Postgres? • 关于Postgres • 公司中⽴,开源协议友好,国际⼀流⼯程⽔准的先进开源数据库 • ⽤户数据⾼可靠实时加解密 (TDE) • 分布式对象存储多副本多可⽤区保证数据安全:“⼀份”数据, 避免数据不⼀致 • 将来Time Travel查询“回收站”数据 ⽤户数据查询效率优化 • 远程访问数据要考虑的点:性能和成本 • 如何解决? • 数据和/或辅助信息缓存,同时⼀致性Hash减少数据移动 • 读取优化(⽐如异步并⾏等) • 计算优化(各种功能特性持续优化中) • 很多复杂
    0 码力 | 31 页 | 1.43 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database V2.8 Release Note

    当 HLL 比较稀疏时支持使用游程编码,可以节省 60%-95% 的存储空间。 2 l 优化 Block Skipping 实现 JANM 的虚拟索引。对于某些特殊的访问方法,表的数据文件/块已经包 含可以用作索引的信息,通过虚拟索引不仅可以利用这些信息来提高性能,而 且能减少维护开销。 l 简墨 JAMN 相关优化 n 通过 Delte Encoding 文件块中的数据进行预聚集计算。 n 增强 JANM Data Skipping 对 IN 条件的处理能力。 n 新增 GUC 参数 pdb_enable_janm_toast,控制 JANM 访问方法中的 Toast。 n 新增建表选项 page_size,设置生成新 Page 的大小限制,以兆字节为单 位。 n 新增建表选项 block_file_size,设置生成新文件的 3 l 外表 FDW 相关 n 新增 raw_fdw 外表接口,支持在协调节点和工作节点上执行,以原始字 节(bytea)读取文件。 n 为外表启用部分聚合能力,支持并行聚集下推。 n 新增 fdb_max_retry(替代原 MaxRetry 功能),默认值设置为 50。 l 临时表相关 n 新增 GUC 参数 pdb_temptable_local_limit_filesize
    0 码力 | 4 页 | 144.49 KB | 1 年前
    3
  • pdf文档 大模型时代下向量数据库的设计与应用

    目前在拓数派负责向量数据库PieCloudVector产品,聚焦于大模型 与大数据领域。拥有多年数据库内核研发和配套解决方案架构经验, 在加入拓数派前曾就职于开源大数据平台Greenplum团队,担任外部 数据源访问框架,对象存储访问扩展,ETL工具等产品模块的研发, 并曾参与PostgreSQL多个版本的代码贡献,拥有丰富的存储模块核心 开发和性能优化等实践经验。 邱培峰 拓数派向量数据库负责人 拓数派:大模型数据计算系统先行者 使用faiss开源算法库做为向量搜索引擎 • 支持向量编码和压缩如PQ等 PieCloudVector • 使用faiss开源算法库做为向量搜索引擎 • 支持二进制索引 • 支持多级索引如HNSW+IVF等 • CPU多核并行/GPU加速 PieCloudVector • Faiss与postgres内核对接 - 基础接口 • 增加向量列类型用于基本的加载与卸载 • 实现向量距离运算符 • 实现向量近似搜索的索引,调用faiss
    0 码力 | 28 页 | 1.69 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓 PieCloudDB ETL 方案设计与实现

    eMPP架构 存算分离,元数据/缓存/计算/云存储 01 02 03 04 各模块可以独立伸缩,模块间接口统一 每一组计算节点组成一个集群,多集群共享 元数据和存储系统 计算节点高度并行 05 兼容 PostgreSQL 生态 PieCloudDB eMPP 分布式架构 导出 (Extract) 转换 (Transform) 导入 (Load) 文件拷贝 CDC模式 流式传输
    0 码力 | 29 页 | 5.24 MB | 1 年前
    3
  • pdf文档 云原生数据库PieCloudDB 性能优化之路

    分布式架构 • 引入了Motion的概念,使得数据可以在不同的工作节点之间移动 • 利用Motion产生分布式的查询计划 • 这些分布式的查询计划会被分为更小的单元,并被分发到不同的工作节点中并行执行 • 对于聚集操作,利用分布式的优势,在工作节点之间通过多阶段聚集来提升性能 # explain (costs off) select sum(b) from t group by a; QUERY
    0 码力 | 26 页 | 711.44 KB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
PieCloudDBDatabase产品白皮皮书白皮书原生虚拟数仓基于PostgreSQLeMPP数据据库数据库虚拟化架构构设设计架构设计实现V2ReleaseNote模型时代向量应用ETL方案方案设计性能优化
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩