积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(15)ClickHouse(15)

语言

全部英语(7)俄语(5)中文(简体)(3)

格式

全部PDF文档 PDF(13)PPT文档 PPT(2)
 
本次搜索耗时 0.010 秒,为您找到相关结果约 15 个.
  • 全部
  • 数据库
  • ClickHouse
  • 全部
  • 英语
  • 俄语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 ClickHouse on Kubernetes

    ClickHouse on Kubernetes! Alexander Zaitsev Altinity Background ● Premier provider of software and services for ClickHouse ● Incorporated in UK with distributed team in US/Canada/Europe 24x7 support for ClickHouse deployments ○ Software (Kubernetes, cluster manager, tools & utilities) ○ POCs/Training What is Kubernetes? “Kubernetes is the new Linux” Actually it’s an open-source machine resources efficiently ● automate application deployment Why run ClickHouse on Kubernetes? Other applications are already there Easier to manage than deployment on hosts Bring
    0 码力 | 34 页 | 5.06 MB | 1 年前
    3
  • pdf文档 ClickHouse on Kubernetes

    ClickHouse on Kubernetes! Alexander Zaitsev, Altinity Limassol, May 7th 2019 Altinity Background ● Premier provider of software and services for ClickHouse ● Incorporated in UK with 24x7 support for ClickHouse deployments ○ Software (Kubernetes, cluster manager, tools & utilities) ○ POCs/Training What is Kubernetes? “Kubernetes is the new Linux” Actually it’s an open-source machine resources efficiently ● automate application deployment Why run ClickHouse on Kubernetes? 1. Other applications are already there 2. Portability 3. Bring up data warehouses quickly
    0 码力 | 29 页 | 3.87 MB | 1 年前
    3
  • pdf文档 ClickHouse in Production

    backend › clickhouse-mysql-data-reader – MySQL replica › clickhouse-operator – configurator for Kubernetes › clickhousedb_fdw – foreign data wrapper › clickhouse_sinker – data loader from Kafka › Tabix EventTime DateTime, BannerID UInt64, Cost UInt64, CounterType Enum('Hit'=0, 'Show'=1, 'Click'=2) ) ENGINE = HDFS('hdfs://hdfs1:9000/event_log.parq', 'Parquet') 50 / 97 In ClickHouse: DDL CREATE TABLE EventTime DateTime, BannerID UInt64, Cost UInt64, CounterType Enum('Hit'=0, 'Show'=1, 'Click'=2) ) ENGINE = HDFS('hdfs://hdfs1:9000/event_log.parq', 'Parquet') Ok. 0 rows in set. Elapsed: 0.004 sec. 51
    0 码力 | 100 页 | 6.86 MB | 1 年前
    3
  • ppt文档 ClickHouse: настоящее и будущее

    Video streaming analytics Media & news analytics Social recommendations Classifieds. Dating Search engine optimization Telecom traffic analysis DPI analysis CDR records analysis Fraud & spam detection DDoS ClickHouse — доступная система 9 ClickHouse можно развернуть: • На своих серверах • В облаках; с Kubernetes • На инфраструктуре заказчика • На личном ноутбуке ClickHouse доступен под разные платформы: • Data Hub Support For Semistructured Data 27 JSO data type: CREATE TABLE games (data JSON) ENGINE = MergeTree; • You can insert arbitrary nested JSONs • Types are automatically inferred on INSERT
    0 码力 | 32 页 | 2.62 MB | 1 年前
    3
  • pdf文档 ClickHouse: настоящее и будущее

    Video streaming analytics Media & news analytics Social recommendations Classifieds. Dating Search engine optimization Telecom traffic analysis DPI analysis CDR records analysis Fraud & spam detection DDoS ClickHouse — доступная система 9 ClickHouse можно развернуть: • На своих серверах • В облаках; с Kubernetes • На инфраструктуре заказчика • На личном ноутбуке ClickHouse доступен под разные платформы: • Data Hub Support For Semistructured Data 27 JSO data type: CREATE TABLE games (data JSON) ENGINE = MergeTree; • You can insert arbitrary nested JSONs • Types are automatically inferred on INSERT
    0 码力 | 32 页 | 776.70 KB | 1 年前
    3
  • pdf文档 3. Sync Clickhouse with MySQL_MongoDB

    CRUD directly Can’t update/delete table frequently in Clickhouse Possible Solutions 2. MySQL Engine Not suitable for big tables Not suitable for MongoDB Possible Solutions 3. Reinit whole table ● Mutations are stuck (KILL MUTATION) ● Zookeeper OOM because of SQL length (Put ids in a Memory Engine temp table) Final Product ● Only one config file needed for a new Clickhouse table ● Init and history state Create Update Update Delete Future ● Auto configure through web ● Auto deploy on Kubernetes ● Open source? ● Github: kevwan Q&A Thanks
    0 码力 | 38 页 | 7.13 MB | 1 年前
    3
  • pdf文档 8. Continue to use ClickHouse as TSDB

    DateTime, `Name` String, `Age` UInt8, ..., `HeartRate` UInt8, `Humidity` Float32, ... ) ENGINE = MergeTree() PARTITION BY toYYYYMM(Time) ORDER BY (Name, Time, Age, ...); ► Column-Orient Model `Name` LowCardinality(String), `Age` UInt8, ..., `HeartRate` UInt8, `Humidity` Float32, ... ) ENGINE = MergeTree() PARTITION BY toYYYYMM(Time) ORDER BY (Name, Time, Age, ...); ► Column-Orient Model UInt8, ..., `time_series` AggregateFunction( groupArray, Tuple(DateTime, Float64)) ) ENGINE = AggregatingMergeTree() PARTITION BY toYYYYMM(time_series_interval) ORDER BY (metric_name, time_series_interval)
    0 码力 | 42 页 | 911.10 KB | 1 年前
    3
  • pdf文档 1. Machine Learning with ClickHouse

    to sample data SAMPLE x OFFSET y CREATE TABLE trips_sample_time ( pickup_datetime DateTime ) ENGINE = MergeTree ORDER BY sipHash64(pickup_datetime) -- Primary Key SAMPLE BY sipHash64(pickup_datetime) You can store model as aggregate function state in a separate table Example CREATE TABLE models ENGINE = MergeTree ORDER BY tuple() AS SELECT stochasticLinearRegressionState(total_amount, trip_distance) function state in ClickHouse You can save aggregate function result into table. CREATE TABLE tab ENGINE = Memory AS SELECT sumState(number) AS x FROM numbers(5) Use sumMerge to get final result SELECT
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
  • pdf文档 0. Machine Learning with ClickHouse

    to sample data SAMPLE x OFFSET y CREATE TABLE trips_sample_time ( pickup_datetime DateTime ) ENGINE = MergeTree ORDER BY sipHash64(pickup_datetime) -- Primary Key SAMPLE BY sipHash64(pickup_datetime) You can store model as aggregate function state in a separate table Example CREATE TABLE models ENGINE = MergeTree ORDER BY tuple() AS SELECT stochasticLinearRegressionState(total_amount, trip_distance) function state in ClickHouse You can save aggregate function result into table. CREATE TABLE tab ENGINE = Memory AS SELECT sumState(number) AS x FROM numbers(5) Use sumMerge to get final result SELECT
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
  • pdf文档 C++ zero-cost abstractions на примере хеш-таблиц в ClickHouse

    пробы (Linear probing). Пример ClickHouse HashMap. Квадратичные пробы (Quadratic probing). Пример: Google DenseHashMap. 1. Хорошая кэш-локальность. 2. Нужно аккуратно выбирать хэш-функцию. 3. Нельзя хранить 1) Выбор load factor 18 18 0.5 хороший вариант для линейных проб с шагом 1 ClickHouse HashMap, Google DenseHashMap использует 0.5 Abseil HashMap использует 0.875 Способ размещения в памяти 19 19 Способ элементов. Это ~600 MB, не влазит в LL-кэши. Хеш-таблица Время ClickHouse HashMap 7.366 сек. Google DenseMap 10.089 сек. Abseil HashMap 9.011 сек. std::unordered_map 44.758 сек. Бенчмарки 28 28
    0 码力 | 49 页 | 2.73 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
ClickHouseonKuberneteskubernetesinProductionfinalpdfSyncClickhousewithMySQLMongoDBContinuetouseasTSDBMachineLearningclickhouseC++
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩