积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(17)Greenplum(17)

语言

全部中文(简体)(17)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.034 秒,为您找到相关结果约 17 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Greenplum机器学习⼯具集和案例

    generate_series(1,30:: bigint) AS ID) foo DISTRIBUTED BY (id); 2017.thegiac.com 2017.thegiac.com • 适合模型应用于数据子集的场景,并行执行效率非常高 • 如果节点间数据通讯,使用 适⽤用场景 2017.thegiac.com MADlib 2017.thegiac.com 强⼤大的分析能⼒力力 PostgreSQL, HAWQ) 底层抽象层 (数组操作、类型转换、数值计算库等) 数据库内建函 数 ⽤用户接⼝口 ⾼高层抽象层 (迭代控制器器) 内循环函数 (实现机器器学习逻辑) Python SQL C++ MADlib 架构 2017.thegiac.com • 是一种由搜索引擎根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google 2017.thegiac.com ⽤用户案例例 1 Greenplum + MADlib 助⼒力力邮件营销 2017.thegiac.com 问题 ● 邮件⼴广告点击预测 模型不不够精准,需 要更更好的邮件营销 策略略 ● 现有数据分析流程 繁琐,速度慢,有 很多⼿手动步骤,易易 出错 客户 数据科学解决⽅方案 ● 某⼤大型跨国多元 化传媒和娱乐公
    0 码力 | 58 页 | 1.97 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    义函数(UDF)(我个人是 Python 和 C 的 fans,后续章节与大家分享)。 这些自定义函数部署到 Greenplum 后可用充分享受到实例级别的并行 性能优势,我们强烈建议用户将库外的处理逻辑,部署到用 MPP 数 据库的 UDF 这种 In-Database 的方式来处理,你将获得意想不到的性 能和方便性;例如我们在某客户实现的数据转码、数据脱敏等,只需 要简单的改写原有代码后部署到 GP Madlib(开源挖掘算法)、 SAS algorithm、R 都是通过 UDF 方式实现在 Greenplum 集群中分布 式部署,从而获得库内计算的并行能力。这里可以分享的是,SAS 曾 经做过测试,对 1 亿条记录做逻辑回归,采用一台小型机耗时约 4 个 多小时,通过部署到 Greenplum 集群中,耗时不到 2 分钟就全部完成 了。以 GPEXT 为例,下图展现了 Solr 全文检索在 Greenplum 中的并 Append-only 的特性,SQL-On-Hadoop 大多不 支持数据局部更新和删除功能 (update/delete);例如 Spark 计算时, 需要预先将数据装载到 DataFrames 模型中; 基本上都缺少索引和存储过程等特征 除 HAWQ 外,大多对于 ODBC/JDBC/DBI/OLEDB/.NET 接口的支持 有限,与主流第三方 BI 报表工具的兼容性不如 MPP 数据库
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum 分布式数据库内核揭秘

    不同节点间移动。 Confidential │ ©2021 VMware, Inc. 12 除了支持数据在不同的 segment 节点上水平分布以外,还支持在单个节点按照不同的标准进行分 区,将单个节点上一个逻辑上的大表分割成物理上的几块,且支持多级分区。 Greenplum 目前支持的分区方法有: l 范围分区:根据某个列的时间范围或者数值范围对数据进行分区。譬如以下 SQL 将创建一个按天分区的 分区表,将 Text、CSV、Avro、Parquet 等。 多态存储 Confidential │ ©2021 VMware, Inc. 14 多态存储 如上所示,可以根据数据访问频率以及数据量这两个维度来选择不同的存储方式,并且在逻辑上仍 然是同一张表。 15 Confidential │ ©2021 VMware, Inc. Greenplum 分布式查询优化器 Motion Confidential │ ©2021 VMware Confidential │ ©2021 VMware, Inc. Greenplum 分布式执行器 QD/QE/火山模型/Gang Confidential │ ©2021 VMware, Inc. 25 Greenplum,或者说 PostgreSQL 是进程模型,而不是类似于 MySQL 的线程模型。 主进程 postmaster 是整个数据库实例的总控进程,负责启动和关闭数据库实例。当客户端和 Coordinator
    0 码力 | 31 页 | 3.95 MB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    ....................................................................................... - 373 - 数据模型 .................................................................................................. 效果,编者也实现了自动 切换命令,当 Master 出现无法正常工作的故障时,自动激活 Standby 来接管 Master 的任务。下面的流程图,是编者实现的 Master 和 Standby 自动切换的逻辑流程图, 可以供读者参考,不过,编者不方便公开实现的代码。 Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 数据是如何存储的 要理解 GP 是如何在不同的 Instance 之间存储数据的,可以参考下图所示的简单 逻辑关系,主键(Primary Key)被使用黑体标记,外键(Foreign Key)关系通过连 线标明。 用数据仓库的术语来说,这种数据模型称为星型模型。在这种数据库模型下,Order 表通常被称为事实表(Fact Table),其他表(Customer、Vendor、Product)被称
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 并行不悖- OLAP 在互联网公司的实践与思考

    postgresql体系结构 11 greenplum体系架构 postgresql体系结构 • pg结构组成 Ø 连接关系系统 Ø 编译执行系统 Ø 存储执行系统 Ø 事务系统 Ø 系统表 • pg逻辑和物理结构 Ø instance实例 - user - tablesapce Ø database - schema - table,view,function - data row Ø 物理文件 Greenplum现状说明 三大Greenplum集群关系 • 数据来源不同 • 数据处理不同 • 时效速度不同 • 体系架构相同 • 年表划分相同 • 平台整体定位 • 定位不同,多集群配合形成逻辑大集群 20 Greenplum现状说明 Greenplum多层业务规划图 21 Greenplum现状说明 三 Greenplum体系架构 二 数据仓库体系架构 一 Greenplum开发规范 全量,id列增量,date列增量 Ø datax,csv,load,copy Ø 数据同步结果确认与显示 • 数据同步方式 Ø gpfdist+外部表 : UMGW大表 Ø db_sync同步程序 : 底层库 + 同步逻辑 + Django界面 Ø 临时同步需求: datax , copy 29 Greenplum运维体系 数据库数据传输与同步-db_sync 30 Greenplum运维体系 数据库数据传输与同步-db_sync
    0 码力 | 43 页 | 9.66 MB | 1 年前
    3
  • pdf文档 Greenplum数据仓库UDW - UCloud中立云计算服务商

    的表格创建类似于 postgresql,由于 udw 采⽤ mpp 数据,创建表格的时候可以选择不同的数据分布策略,不同的存储⽅式等等。创建表格的时候可以定义下⾯信息: 数据类型 表约束 数据分布策略 表存储模型 分区策略 外部表:udwfile、udwhdfs 下⾯分别根据上⾯的可选信息对表格设计进⾏分析。 4.1 数据类型 数据类型 开发指南 Greenplum数据仓库 UDW Copyright 2012-2021 UCloud 优刻得 85/206 备注:更多关于分区策略的的使⽤可以通过命令⾏执⾏\h create table 或者 \h alter table 查看 4.4 表存储模型( 表存储模型(heap表和 表和appendonly表) 表) UDW ⽀持两种类型的表:堆表(heap table)和追加表(Appendonly table)。默认创建的是堆表。 堆表(heap CREATE TABLE heapTable( a int, b text ) DISTRIBUTED BY (a); 创建⼀个追加表(CREATE TABLE 命令的 WITH ⼦句来指定表存储模型): CREATE TABLE aoTable( a int, b text ) WITH (appendonly=true) DISTRIBUTED BY (a); 4.5 表存储⽅式(⾏存储、列存储)
    0 码力 | 206 页 | 5.35 MB | 1 年前
    3
  • pdf文档 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum

    Greenplum 数据库或 打开任何其他外部连接。 集成分析:改进后的全新分析接口 一直以来,客户都能在 Greenplum 中做高级分析,无论是提供将应用逻辑向下推送至数据所在位置的方法,执行分 析功能,还是以大规模并行方式构建数据模型,都可以实现。Greenplum 支持适用于数据挖掘和数据科学工作的最 全面、最先进的分析程序包和扩展。Greenplum 还针对最受欢迎的 Python 和 等 R 语言算法库和程序包。 此外,Greenplum 还支持最新版 Apache MADlib(可用 SQL 进行机器学习、深度学习和图分析),它支持高并行 和基于 GPU 的深度学习模型训练,内置于集群硬件中的 GPU,能帮助 Greenplum 6 的用户获得超过 CPU 2 个数量 级的性能加速,尤其对于可预测的分析用例和图像识别,这些功能将展现奇效。支持在 Apache Solr
    0 码力 | 17 页 | 2.04 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 5: 新一代数据平台

    GREENPLUM 5:新一代数据平台 集成分析:改进后的全新分析接口 一直以来,客户都能在 Pivotal Greenplum 中做高级分析,无论是提供将应用逻辑向下推送至数据所在位置的方法,执行 分析功能,还是以大规模并行方式构建数据模型,都可以实现。Greenplum 5 支持适用于数据挖掘和数据科学工作的最全面、 最先进的分析程序包和扩展。 Greenplum 5 还针对最受欢迎的 Python
    0 码力 | 9 页 | 690.33 KB | 1 年前
    3
  • pdf文档 Greenplum 架构概览

    和 Master- Slave 有何区别? 在 Master-Slave 模型下,Master 和 Slave 拥有相同的数据,并且 Master 是存储和处理数据的唯⼀⼊⼝,Slave 仅复制 Master 的 数据。⽐如 MySQL 的主从模型、Redis 的主从模型 在 Master-Segment 模型下,⾸先 Master 节点不存储数据,其次就是数据将会以分⽚的⽅式存储在多个 Segment 节点中。这⾥可以 类⽐ Redis Cluster,只不过 Redis Cluster 是去中⼼化的。在 Master-Segment 模型中通常也会包含 Master-Slave 模型,也就是增 加数据副本,以实现⾼可⽤ 简单地来说,Master-Slave 主要进⾏数据复制(冗余),⽽ Master-Segment 则会同时进⾏数据分区(⽔平扩展)和复制(冗余) 分区与分⽚ 基于⾏的存储⽅式,也可以选择基于列的存储⽅式,并且⽀持诸如 S3、HDFS 等外部存储 GP 基本查询流程 PostgreSQL 进程模型 PostgreSQL(以下简称 PG)采⽤的是经典的 C/S 模型,即 Client-Server 模型,同时使⽤多进程的⽅式⽀持并发查询与写⼊。也就是说, 每当有⼀个客户端连接⾄ PG 时,就会有⼀个⼦进程被创建出来。postmaster 进程和
    0 码力 | 1 页 | 734.79 KB | 1 年前
    3
  • pdf文档 Greenplum 6: 混合负载的理想数据平台

    Confidential–Internal Use Only 卓越的OLAP特性 列式存储 分区、压缩 高级特性 递归查询、窗口函数 集成分析 多格式、多语言 Madlib: 机器学习 数据库内并行模型训练和预测、分类 ORCA 复杂查询优化器 成熟稳定 完备生态、支撑核心生产系统 13 Pivotal Confidential–Internal Use Only 列式存储 表‘SALES’ 优化分布式大数据系统中特别复杂的查询 18 Madlib: 迭代并行模型训练 Master model = init(…) WHILE model not converged model = SELECT model.aggregation(…) FROM data table ENDWHILE 模型存储过程 … 广播 Segment 2 Segment Segment n … Transition 函数 操作一小批数据并更新 模型状态 1 Merge 函数 2 Final函数 3 Segment 1 19 Madlib: PageRank性能 Greenplum集群: ● 1 master ● 4*6 segment 50亿条链接 (1K) (10K) (100K) (1M) (10M) (100M) Note: log-log
    0 码力 | 52 页 | 4.48 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
Greenplum机器学习案例精粹文集分布布式分布式数据据库数据库内核揭秘Database管理管理员指南并行并行不悖OLAP互联联网互联网公司实践思考仓库数据仓库UDWUCloud中立计算服务服务商完全兼容欧拉开源操作系统操作系统HTAP平台Pivotal一代新一代架构概览混合负载理想
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩