积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(19)Greenplum(19)

语言

全部中文(简体)(19)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 19 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Greenplum数据库架构分析及5.x新功能分享

    Pivotal Confidential–Inter nal Use Only 1 © Copyright 2013 Pivotal. All rights reserved. Greenplum 数据库架构分析及5.x 新功能分享 杨瑜 Pivotal中国研发中心 2 Pivotal Confidential–Inter nal Use Only 日程 Ÿ Greenplum 数据库(GPDB)简介 标准SQL支持,SQL 2003 OLAP扩展 支持 MapReduce 扩展编程语言 (Python,R, Java, Perl, C/C++) 第三方工具 BI 工具, ETL 工具 文本分析,数据挖掘等 管理工具 GP Command Center GP Workload Manager 7 Pivotal Confidential–Inter nal Use Only MPP(大规模并行处理)无共享体系架构 16 Pivotal Confidential–Inter nal Use Only 解析器 主节点Segment 系统表 优化器 分布式事务 调度器 执行器 解析器执行词法分 析、语法分析并生 成 解析树 客户端 主节点接受客户连接, 处理请求,执行认证 解析器 主节点 17 Pivotal Confidential–Inter nal Use Only 优化器 本地存储
    0 码力 | 44 页 | 8.35 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    1 新一代数据管理和数据分析 解决方案 关于Greenplum公司 • Greenplum是一家数据库软件公司,在数据处理和 BI/DW领域,提供容量 最大、速度最快、性价比最好的数据库引擎产品和服务。 • Greenplum总部位于圣马蒂奥,加利福尼亚州,美国,成立于2003年6月。 • Greenplum 中国于2008年12月正式成立. 2010/4/8 官方网站: www.greenplum Credibility Aging Proprietary Legacy Scalable, Open Software-Based Commodity HW • 用户人数 • 安全度 • 查询、报告、分析的数量 • 数据的高度多样性 • 大量定制数据 • 监管要求 商务智能/数据仓库发展趋势 一切都在增长! 数据仓库工作量:数据膨胀 面临的新难题是如何处理大规模数据 过去的10年 公民服务 国家安全 电子政务 法规实施和监管 人力资本管理 信息传播 合规性报告 资产组合分析 客户报表 电汇通知 分部记分卡 客户关系管理、收 购和盈利率 欺诈检测 欺诈分析 客户流失分析 响应时间 流量分析 产品关联/捆绑 零售 存储运营分析 客户忠诚度计划 协作规划和预估 预防亏损 优化供应链 当今的数据仓库方案 基于硬件 专有,昂贵 不可扩展
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    Date2.indd 2 16-11-22 下午3:38 Greenplum 精粹文集 3 大家都知道 Greenplum 的数据库引擎层是基于著名的开源数据库 Postgresql的(下面会分析为什么采用Postgresql,而不是mysql等等), 但是 Postgresql 是单实例数据库,怎么能在多个 X86 服务器上运行多 个实例且实现并行计算呢?为了这,Interconnnect 且不管这是不是自我标榜, 就从 OLAP 分析型方面来考察,以下几点 Postgresql 确实胜出一筹。 Big Date2.indd 4 16-11-22 下午3:38 Greenplum 精粹文集 5 1) PG 有非常强大 SQL 支持能力和非常丰富的统计函数和统计语法 支持,除对 ANSI SQL 完全支持外,还支持比如分析函数(SQL2003 OLAP window Greenplum 作为 MPP 数据分析平台,这些功 能都是必不可少的。 2) Mysql 查询优化器对于子查询、复制查询如多表关联、外关联的支 持等较弱,特别是在关联时对于三大 join 技术:hash join、merge join、nestloop join 的支持方面,Mysql 只支持最后一种 nestloop join(据说未来会支持 hash join),而多个大表关联分析时 hash join
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum机器学习⼯具集和案例

    2017.thegiac.com • PL/X:各种语言实现自定义函数(存储过程) • MADLib: 数据挖掘、统计分析、图(Graph)等算法 • GPText:文本检索和分析 • GeoSpatial:地理信息数据分析 • Image: 图像数据分析 Greenplum 机器器学习⼯工具集 2017.thegiac.com Greenplum Procedure • 如果节点间数据通讯,使用 适⽤用场景 2017.thegiac.com MADlib 2017.thegiac.com 强⼤大的分析能⼒力力 ● 机器器学习 ● 图形分析 ● 统计分析 MPP系统上的可扩展应⽤用 Apache上的开源项⽬目 ● 发布了了 6 个版本 ● Apache Text Analysis Nearest Neighbors • k-Nearest Neighbors 成熟的数据科学学习库 2017.thegiac.com • 更好的并行度 • 算法充分利用 MPP 架构实现并行 • 更好的可扩展性 • 算法随着数据扩充而线性扩展 • 更高的预测精准度 • 适用更多数据,而不是抽样 • 顶级 ASF 开源项目 •
    0 码力 | 58 页 | 1.97 MB | 1 年前
    3
  • pdf文档 Greenplum 介绍

    Greenplum 介绍 Greenplum 是全球领先的开源大数据平台,是能够提供包含实时处理、弹性扩容、混合负载、云 原生和集成数据分析等强大功能的大数据引擎。 著名分析机构 Gartner 2019 年报告中,在经典数据分析领域 Greenplum 全球排名第三,实时分 析领域全球排名并列第四。Greenplum 是两个领域中排名前十的产品中的唯一一款开源产品。 性和线性扩展能力,并内置 并行存储、并行通讯、并行计算和优化技术。同时,Greenplum 还兼容 SQL 标准,具备强大、 高效、安全的 PB 级结构化、半结构化和非结构化数据存储、处理和实时分析能力,可部署于企 业裸机、容器、私有云和公有云中。值得一提的是,作为 OLAP 型的大数据平台, Greenplum 同 时还能够支持涵盖 OLTP 型业务的混合负载,从而帮助客户真正打通业务-数据-洞见-业务的闭环。 美国国家税务局、美联储、三星、戴尔、福特、 爱立信等,国内客户包括深交所、建设银行、民生银行、广大银行、浦发银行、航旅纵横、中国 移动、华为等。自 2015 年开源以来,更是吸引了包括阿里云、百度云、中移动、旷世、去哪儿 网、易观、腾云科技、饿了么、金风科技在内大量开源用户。 Greenplum 大数据平台的优势 ● 一次打包到处运行的平台:部署灵活,不受限于硬件环境和平台,无论裸机、私有云、公
    0 码力 | 3 页 | 220.42 KB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    通过外部表(External Table)支持高速并行数据装载。外部表可以使用[单条记 录出错隔离]模式,以允许在装载数据过程中将出错的数据记录下来。可以设置错误容 忍的阈值,以实现对数据装载质量的控制。也可以对错误信息进行分析,以帮助改善数 据装载的质量。 结合使用外部表和 GP 的并行文件分发服务(gpfdist),管理员可以实现最大化 的利用网络带宽资源以实现高速并行装载。 上图展示了 GP 23 - 对于一些尺寸很小的表(叫维表或者参考表)来说,无所谓如何分布,所以,这样 的表完全可以按照 HASH 分布或者使用随机分布,甚至复制分布(只要可以接受其尺寸 放大的影响),对整体的分析查询性能不会有明显的影响。  复制(Replicated)分布 复制分布,会在每个 Instance 上都存储一份完整的数据拷贝,复制表是在 6 版 本新引入的数据分布策略,这里需要特别指出,复制表,因为需要在每个 策略,如果这 么做,将会极大的浪费存储空间,同时,未必会带来性能的改善,对于复制表的理解, 应该仅限于:复制表的存在,等于提前把广播做好了,减少了执行计划的复杂度,对于 一些非常小的表,涉及的业务场景追求极致的性能时才考虑,对于通常的分析型场景, 无需考虑复制表。对分布策略要理解透彻,不能过度迷信某一种分布策略,时常在社区 听到有人说,复制表的性能更好,这是一种片面的理解,只能说,在某些特定的情况下,
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 最佳实践分享

    对于少数频繁查询的宽表,例如交易表、帐户表、客户表等采用列存储,其它表采用行存储 数据压缩: • 在金融业,行压缩的数据压缩比在1:6左右,一般采用zlib5级压缩 • 数据压缩对于高并发查询分析系统可以大幅降低IO消耗,提升并行处理、混合负载的性能 分布键使用: • 尽量采用一个常用关联字段作为分布键,例如账号、客户号,这个可以提高关联条件的命中率,减少关联时数据重分布 (主要对大表) 以数据批处理为主要功能的系统一般不需建索引 • 以并发查询为主要功能,特别OLTP查询(根据KEY,Attribute等作为筛选条件)的系统按照常用字段建索引。 • 建索引的方法:对于区别度高的字段,如账号、手机号码等使用B-Tree索引,对于区别度低的字段(<10000),采用 Bitmap索引; • 表关联时,一般不需要建索引,如果where条件的筛选性很强,建立索引可以让系统性能提升 • 对于大数据类系统,应避免使用PK 为什么有OOM? – 当SQL执行过程中申请不到需要的内存,就会报错out of memory  常见的OOM原因 – 因为没有Analyze table,错误的执行计划导致 – 并发度太高,内存不足 – 品质不高的SQL,例如LEFT JOIN大表,如果大表在关联条件上倾斜严重,可能导致OOM – 耗内存SQL,如window function  OOM的后果 –
    0 码力 | 41 页 | 1.42 MB | 1 年前
    3
  • pdf文档 并行不悖- OLAP 在互联网公司的实践与思考

    • “未来”的数据 —— 趋势分析 4 数据仓库体系架构 业务数据与数据特点 • 现在的数据 —— OLTP Ø实时,在线系统,客户使用 Ø事务小,频率高,并发高 • 过去的数据 —— OLAP Ø非实时(T+1,或小时级),离线系统,分析决策 Ø事务大,频率相对小,并发低 • 未来的数据 —— 趋势分析 Ø非实时,离线+在线流系统,趋势分析 Ø算法分析,持续计算 5 数据仓库体系架构 数据的存储和计算 —— OLAP集群 • 4 结果数据的展现 —— 数据集市 • 5 访问接口的封装 —— API接口服务器 • 6 最终数据的显示 —— 前端界面 • 7 结果数据的交互 —— OLTP,趋势分析 • 8 OLAP数据流转 —— dbsync平台 7 数据仓库体系架构 数据架构示意图 8 数据仓库体系架构 架构的具体技术实现 • 轻量级数据仓库 —— Inforbright – Ø避免直接在Greenplum执行消耗session会话的操作 Ø尽量不创建索引 • 上线与调度规范 Ø上线的程序,必须要经过测试,才可以生产使用 Ø调度程序需考虑每个任务的前后关系,时间富裕 Ø避免因为过于追求并行度,对多个任务造成相互影响 38 Greenplum现状说明 三 Greenplum体系架构 二 数据仓库体系架构 一 Greenplum开发规范 五 Greenplum运维体系 四 Greenplum扩展规划
    0 码力 | 43 页 | 9.66 MB | 1 年前
    3
  • pdf文档 Greenplum 6: 混合负载的理想数据平台

    混合负载的理想数据平台 高小明 全球领先的开源MPP大数据平台 可扩展性 ACID事务 VS 分布式 简单易用 VS 结构化 半结构非结构化 VS 事务型 分析型 VS MPP - massively parallel processing - 大规模并行处理 master standby primary segment mirror segment Segment Host NodeN Greenplum (MPP) Oracle (SMP) OLAP - Online Analytical Processing - 联机分析处理 Gartner 2019数据分析行业报告 Pivotal Greenplum scored highly this year in all four use cases, positioning among well-showcased 12 Pivotal Confidential–Internal Use Only 卓越的OLAP特性 列式存储 分区、压缩 高级特性 递归查询、窗口函数 集成分析 多格式、多语言 Madlib: 机器学习 数据库内并行模型训练和预测、分类 ORCA 复杂查询优化器 成熟稳定 完备生态、支撑核心生产系统 13 Pivotal Confidential–Internal
    0 码力 | 52 页 | 4.48 MB | 1 年前
    3
  • pdf文档 Greenplum 分布式数据库内核揭秘

    所实现的大规模并行处理(MPP)开源数据平台,具有良好的弹性 和线性拓展能力,内置并行存储、并行通信、并行计算和并行优化功能,兼容 SQL 标准。拥有独 特的高效的 ORCA 优化器,具有强大、高效的 PB 级数据存储、处理和实时分析能力,同时支持 OLTP 型业务的混合负载。 Greenplum 分布式数据库简介 5 Confidential │ ©2021 VMware, Inc. Greenplum 集群化概述 Coordinator/Segment (cost=0.00..31.40 rows=2140 width=8) (4 rows) Confidential │ ©2021 VMware, Inc. 28 Slice:为了提高查询执行并行度和效率,Greenplum 把一个完整的分布式执行计划分割成多个 Slice,每个 Slice 负责查询计划的一部分。划分 Slice 的边界为 Motion,每遇到一个 Motion 则一 刀将 Motion
    0 码力 | 31 页 | 3.95 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
Greenplum数据据库数据库架构分析功能分享一代新一代管理数据管理数据分析解决方案解决方案精粹文集机器学习案例介绍Database管理员指南Pivotal最佳实践并行并行不悖OLAP互联联网互联网公司思考混合负载理想平台分布布式分布式内核揭秘
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩