Greenplum Database 管理员指南 6.2.1的本地 化服务,用户遇到问题,反馈给专业技术支持人员,或者专业售后服务团队,他们会同 用户一起排查和解决问题,如果有需要,还会保持与研发的持续沟通,虽然以前也是这 种工作模式,但由于时区和语言文化等诸多差异,沟通链路较长,时间较久,研发的本 地化,使得沟通的效率大大提高。 GP 是一个纯软件实现的 MPP 数据库产品,采用 Share-Nothing 架构,可管理和 处理分布在多个不同主机上的大规模数据集。对于 源使用上的 优先级,这里说的优先是相对的。这种优先级,几乎是没用的,MAX和MIN之间可 能也测不出差异,无法达到资源组的CPU压制效果,如果能达到,也就不需要资源 组了。 活动语句的成本限制。该值限制的是,由执行计划评估得到的的Cost值,该值以 涉及的磁盘页(disk page)作为计量单位。 资源队列创建好之后,ROLE(User)可以被分配到合适的资源队列。一个资源队列 达到资 源队列限制的值)。一旦一条语句开始执行,其分配的内存一直到执行结束才会释放(即 便其实际使用的内存小于分配的内存)。 执行优先级如何工作 资源限制是针对活动语句来说的,内存和成本的限制属于是否许可类型,其决定查 询语句是允许进入查询状态还是保持排队状态。在语句处于活动状态时,其需要分享 CPU资源,这部分的资源由资源队列的优先级控制。当一个更高优先级的语句进入运行 状态时,0 码力 | 416 页 | 6.08 MB | 1 年前3
Greenplum 精粹文集横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 时是千兆以太网)组建的 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce 计算框架还是 MPP(海量并行处理)计算框架,最终还 元数据一致性和全局事务一致性,特别是在节点规模较多时,将导致 性能下降,严重时可能导致多 Master 之间的脑裂引发严重系统故障。 4. Greenplum 不能做什么? Greenplum 最大的特点总结就一句话:基于低成本的开放平台基础上 提供强大的并行数据计算性能和海量数据管理能力。这个能力主要指 的是并行计算能力,是对大任务、复杂任务的快速高效计算,但如果 你指望 MPP 并行数据库能够像 OLTP 数据库一样,在极短的时间处 另外,Mapreduce 在整个 MAP->Shuffle->Reduce 过程中通过文件 来交换数据,效率很低,MapReduce 要求每个步骤间的数据都要序列 化到磁盘,这意味着 MapReduce 作业的 I/O 成本很高,导致交互分 析和迭代算法开销很大,MPP 数据库采用 Pipline 方式在内存数据流 中处理数据,效率比文件方式高很多。 总结以上几点,MPP 数据库在计算并行度、计算算法上比 Hadoop0 码力 | 64 页 | 2.73 MB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案数据仓库和分析应 用程序 Greenplum数据架构 商用硬件集群 分析 数据 市场 企业数 据仓库 企业数据集合:主要的优势 • 实体整合 • 提高服务器使用率 • 降低总硬件成本 • 降低能量成本 • 可以预估的服务等级 • 确保关键任务的可靠性 • 最出色的性能 • 高度灵活性 • 逐步扩展计算能力 • 动态措施 • 数据访问: • 在一个系统中协调所有企业数据的位置 • 通过Greenplum超级数据处 理引擎增强竞争优势 Greenplum数据引擎:内容和方式 价值主张 – 性价比: 性能可达到传统方案(Oracle、Teradata)的 10到100倍, 而成本只是其一小部分 – 可伸缩性:从较低的万亿字节扩展到千万亿字节 – 开放式系统:在通用系统和开放源软件的基础上创建 前提条件 – 硬件:基于开放式标准硬件 – 软件:Postgres和Greenplum 描,历时超过20分钟。 结论:如果采用DWA替代现有环境,获得超过120倍的性能提升。 • 真实应用测试 – DWA测试结果:完成应用的全过程仅耗时48分钟。 – 客户投产环境:客户11月份月度处理时,完成本项任务需要65小时。 结论:如果采用DWA替代现有环境,获得超过80倍的性能提升。 案例分享:阿里巴巴 • 业务用例 • 通过分析用户的网络点击日志,进行产品关联分析,让客户可以 快速的找到相近产品0 码力 | 45 页 | 2.07 MB | 1 年前3
Pivotal HVR meetup 20190816支持全量同步,但增量同步延时,数据量越大,延时更久。 ➢ JDBC驱动强依赖。 ➢ 版本更新不及时,对GreenPlum新版本无法持续性支持,不稳定。 ➢ 需开发人员支持,二次开发或脚本支持,开发时间成本和人力成本高。 ➢ 支持数据库版本少,无法支持跨多版本的Oracle、MySQL、PostgresSQL、SQL Server等 ➢ 断点续传不支持 ➢ 大量数据同步的情况下,同步组件效率低 参考:https://mp0 码力 | 31 页 | 2.19 MB | 1 年前3
Greenplum on Kubernetes
容器化MPP数据库容器化数据库+Kubernetes ○ Apache Spark ○ CockroachDB ○ Apache HAWQ 云数据库存储方案 ● 块存储 ○ 文件系统接口 ● 对象存储 ○ 成本低 ○ 扩展性强 ○ 访问延迟高 Greenplum on Kubernetes Network Interconnect Standby Host Master Host Segment0 码力 | 33 页 | 1.93 MB | 1 年前3
Greenplum 介绍公 有云均可部署。硬件环境的普适性,提供了极大的灵活性,解放了硬件平台的制约和绑定, 从而允许客户灵活选择最适合的方案,降低未来的迁移代价,而开发、运维人员无需要学 习新的数据库处理技术,人力成本也能够大大降低。 ● 处理和分析各种数据源的数据的平台:支持各种数据源,包括 Kafka、Hadoop、HIVE、 HBase、S3、Gemfire、各种数据库和文件等,不需要移动数据,避免了数据加载的复杂0 码力 | 3 页 | 220.42 KB | 1 年前3
Greenplum 分布式数据库内核揭秘在合理的避免数据倾斜的分布键时,即可采用随机分布的方式。 随机分布与复制分布 复制分布则表示整张表在每个节点上都有一份完整的拷贝,假设我们有 100 个节点,复制表则会将 数据保存 100 份。复制表可避免生成分布式查询计划,而是生成本地计划,从而避免数据在集群的 不同节点间移动。 Confidential │ ©2021 VMware, Inc. 12 除了支持数据在不同的 segment 节点上水平分布以外,还支持在单个节点按照不同的标准进行分0 码力 | 31 页 | 3.95 MB | 1 年前3
Pivotal Greenplum 5: 新一代数据平台数据卷实现较高的分析查询 性能。GPORCA 的强大之处在于 能够以并行方式针对提交的 SQL 语句计算大量可能的查询计划。为了生成最快的计划,GPORCA 会计算数千种备选查询 执行计划,并根据成本做出决策。它还能免去不必要的剖析步骤,从而缩短优化时间。与传统查询优化器相比,GPORCA 可以计算更多备选计划,因此能够优化更多查询。3 现代数据分析和商业智能 (BI) 生成的 SQL 查询往0 码力 | 9 页 | 690.33 KB | 1 年前3
共 8 条
- 1













