Greenplum 新一代数据管理和数据分析解决方案最大、速度最快、性价比最好的数据库引擎产品和服务。 • Greenplum总部位于圣马蒂奥,加利福尼亚州,美国,成立于2003年6月。 • Greenplum 中国于2008年12月正式成立. 2010/4/8 官方网站: www.greenplum.com www.greenplum-china.com Greenplum:简介 Greenplum数据引擎软件为新一代数 据仓库所需的大规模数据和复杂查询功 据仓库所需的大规模数据和复杂查询功 能所设计 3 推动数据依赖型企业的发展 全球各地的一些Greenplum客户 4 亚太地区 欧洲、中东、非洲 北美 中国的客户 5 金融 交通 互联网 其它 Teradata Netezza Oracle Greenplum Neoview Vertica Paraccel Aster Data Hadoop Current Database Vendor Credibility Aging Proprietary Legacy Scalable, Open Software-Based Commodity HW • 用户人数 • 安全度 • 查询、报告、分析的数量 • 数据的高度多样性 • 大量定制数据 • 监管要求 商务智能/数据仓库发展趋势 一切都在增长! 数据仓库工作量:数据膨胀 面临的新难题是如何处理大规模数据 过去的10年0 码力 | 45 页 | 2.07 MB | 1 年前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum。 openEuler 平台架构 openEuler 是覆盖全场景的创新平台,在引领内核创新,夯实云化基座的基础上,面向计算架构互联总线、存储介质 发展新趋势,创新分布式、实时加速引擎和基础服务,结合边缘、嵌入式领域竞争力探索,打造全场景协同的面向数字 基础设施的开源操作系统。 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum 适应性强在 MPP 数据库领域独占鳌头,基于 Shared Nothing 的 MPP 高性能系统架构,Greenplum 可以将 PB 级的数据仓库负 载分解,并使用所有的系统资源并行处理单个查询。同时 Greenplum 具备数据库 ACID 特性,运行符合 ANSI 标准 的 SQL,可以让服务器群集能够以单一数据超级计算机的方式运行,且性能比传统数据库或其他同类平台高出数十甚 至数百倍。其多种分析扩展功能支持 和 INSERT 提升比较 大。一个优化有关 procarray 锁,另一个优化和事务有关,大多数 OLTP 查询带有主键或者分布键,这种查询不需要 两阶段提交(2PC)。 集群在线扩容 Greenplum 6 实现了不停库在线增加新节点, 期间不会中断正在运行的所有查询;另外采用了 Jump Consistent Hash 的一致性哈希算法, 在数据重分布期间,每个旧节点仅移动出需要移动的数据到新节点上0 码力 | 17 页 | 2.04 MB | 1 年前3
Greenplum 精粹文集分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 下午3:38 2 由此,业界认识到对于海量数据需要一种新的计算模式来支持,这种 模式就是可以支持 Scale-out 式并行计算,不依赖于任何专有硬件,达到的性能却远远超过传统高 昂的专有系统。 Big Date2.indd 2 16-11-22 下午3:38 Greenplum 精粹文集 3 大家都知道 Greenplum 的数据库引擎层是基于著名的开源数据库 Postgresql的(下面会分析为什么采用Postgresql,而不是mysql等等), 但是 Postgresql 是单实例数据库,怎么能在多个 X86 服务器上运行多 那一年多的时间里,大咖们很大一部分精力都在不断的设计、优化、 开发 Interconnect 这个核心软件组件。最终实现了对同一个集群中多 个 Postgresql 实例的高效协同和并行计算,Interconnect 承载了并行 查询计划生产和 Dispatch 分发(QD)、协调节点上 QE 执行器的并 行工作、负责数据分布、Pipeline 计算、镜像复制、健康探测等等诸 多任务。 在 Greenplum 开源以前,据说一些厂商也有开发0 码力 | 64 页 | 2.73 MB | 1 年前3
Greenplum数据库架构分析及5.x新功能分享无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) 多种压缩,多级分区表 MPP(大规模并行处理)无共享体系架构 从主节点 … 主节点 SQL • 主节点和从主节点,主节点负责协调整个集群 • 一个数据节点可以配置多个节点实例(Segment Instances) • 节点实例并行处理查询(SQL) • 数据节点有自己的CPU、磁盘和 内存(Share nothing) • 高速Interconnect处理持续 数据流(Pipelining) Interconnect Segment Motion Table Scan Hash Hash Join Gather Motion SLICE 3 SLICE 1 SLICE 2 SEGMENT 2 SEGMENT 1 生成并行查询计划 12 Pivotal Confidential–Inter nal Use Only master segment1 segment2 QD process slice 3 QE process0 码力 | 44 页 | 8.35 MB | 1 年前3
Greenplum分布式事务和两阶段提交协议/Jeffrey D.Ullman/Jennifer Widom《数据库系统实现》 查询编译器/ 优化器 事务管理器 DDL编译器 执行引擎 日志和恢复 并发控制 索引/文件/ 记录管理器 缓冲区管理器 缓冲区 锁表 存储管理器 存储 查询计划 对索引、文件和 记录的请求 页命令 事务命令 查询、更新 用户/ 应用 DDL命令 数据库管理员 数据、元数据、索引 日志页0 码力 | 42 页 | 2.12 MB | 1 年前3
Greenplum上云与优化为什么上云? 2016Postgres中国用户大会 ApsaraDB for GP的定位 ApsaraDB for GP = 简单、高效解决大数据分析需求 MPP + 列存压缩 复杂SQL + 查询优化器 本地高效存储 +高速网络 +预置稳定资源 = = 2016Postgres中国用户大会 GP vs. RDS? Select count(*) from customer group 应用服务器 2016Postgres中国用户大会 ApsaraDB for GP的定位 ApsaraDB for GP = 简单、高效解决大数据分析需求 MPP + 列存压缩 复杂SQL + 查询优化器 本地高效存储 +高速网络 +预置稳定资源 = = 2016Postgres中国用户大会 ApsaraDB for GP的内核优化 2016Postgres中国用户大会 ApsaraDB T_OSS Where ts > 2016 Insert into T_OSS Select count(*) from T_GP Group by city OSS作为“数据湖”,GP作为分析引擎 2016Postgres中国用户大会 支持外部扩展已插件形式管理 支持插件创建的语法 CREATE EXTENSION DROP EXTENSION Patch已提交社区 2016Postgres中国用户大会0 码力 | 26 页 | 1.13 MB | 1 年前3
Greenplum 介绍Greenplum 介绍 Greenplum 是全球领先的开源大数据平台,是能够提供包含实时处理、弹性扩容、混合负载、云 原生和集成数据分析等强大功能的大数据引擎。 著名分析机构 Gartner 2019 年报告中,在经典数据分析领域 Greenplum 全球排名第三,实时分 析领域全球排名并列第四。Greenplum 是两个领域中排名前十的产品中的唯一一款开源产品。 支持各种数据格式的平台:不管是结构化、半结构化(XML、JSON、KV)还是非结构化, 譬如文本数据、GIS 数据、图数据等。 ● 具有强大内核的平台:Greenplum 具有强大的内核技术,包括数据水平分布、并行查询执 行、专业优化器、线性扩展能力、多态存储、资源管理、高可用、高速数据加载等。 ● 具备强大灵活性和可扩展性的平台: 支持扩展(Extension)、自定义类型和函数、PXF 和外部表技术。0 码力 | 3 页 | 220.42 KB | 1 年前3
Greenplum机器学习⼯具集和案例⾼高层抽象层 (迭代控制器器) 内循环函数 (实现机器器学习逻辑) Python SQL C++ MADlib 架构 2017.thegiac.com • 是一种由搜索引擎根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google 创办人 Larry Page来命名 Image from h_ps://en.wikipedia.org/wiki/PageRank PageRank 性能 2017.thegiac.com MADlib vs. Spark: 不不同的产品,侧重点不不同 MADlib Spark 算法库 易用性 需要编程 查询优化 成熟度稍差 内存和流处理 通过 Gemfire SQL 语法支持 需要提升 磁盘数据 不是核心焦点 并发性能 不是核心焦点 大数据关联 不是核心焦点0 码力 | 58 页 | 1.97 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1........................................................................................ - 62 - 转移查询的资源组 .............................................................................................. ................ - 177 - 第十章:数据查询 .................................................................................................................. - 179 - 理解 GP 的查询处理 ............................. ................................. - 197 - 验证查询是否使用了 Orca ................................................................................... - 198 - 定义查询.............................................0 码力 | 416 页 | 6.08 MB | 1 年前3
Pivotal Greenplum 5: 新一代数据平台.................................................................................6 GPORCA:Pivotal 查询优化器更新 ............................................................................................. .............................................................................................7 架构化查询语言性能提升 ............................................................................................ RDBMS 查询优化器相比,GPORCA 大幅度地提高了查询性能。 Pivotal Greenplum 5:新一代数据平台 作为重要的新版本,Pivotal Greenplum 5 带来了多项产品改进和新增功能,在管理数据和对数据库中存储的信息应用数据 科学、分析、报告和数据洞察方法方面,这些功能对大多数客户都很有帮助。Greenplum 解决方案的架构设计目的是管理 非常复杂的查询,以及为符合0 码力 | 9 页 | 690.33 KB | 1 年前3
共 23 条
- 1
- 2
- 3













