完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum................................................................................... 8 以开源创新替代专有分析环境 .................................................................................................. ................................................................................. 10 Greenplum 集群多站点复制 ............................................................................................... 解决方案,可部署在不同操作系统、 不同芯片的环境,适合本地部署、多云环境(公有云和私有云)中。Greenplum 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源0 码力 | 17 页 | 2.04 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1........................................................................... - 288 - 为 gpadmin 用户配置环境变量 ................................................................................... - 290 - 第十三章:启动与停止 Master,就目前已有用户的使用情况来看,即便是编者有幸参与建设的 192 台计算节点的集群,Master 的资源依然很空闲,并不会成为性能的瓶颈,同时,因为 是单 Master,可以最大限度的规避多 Master 架构的系统表频繁不一致的缺陷。 GP 是基于 PostgreSQL 发展而来,用户端可以如同访问 PostgreSQL 那样与 GP 进行交互。可以通过 PostgreSQL 客户端程序(如 $ PGOPTIONS='-c gp_session_role=utility' psql 在 GP 推荐的硬件配置环境下,每个 Instance 需要对应数个 CPU Core 的资源 资源,具体的比例需要根据数据库的适用场景进行综合评估。例如在生产环境,每个 Instance 所在的主机配置了 2 个 16 Core 的 CPU,可根据不同的场景,配置 4 ~ 12 个不等的 P0 码力 | 416 页 | 6.08 MB | 1 年前3
Greenplum 精粹文集Greenplum(当时还是一个 Startup 公司,创始人家门口有 一棵青梅 ——greenplum,因此而得名)召集了十几位业界大咖(据 说来自 google、yahoo、ibm 和 TD),说干就干,花了一年多的时间 完成最初的版本设计和开发,用软件实现了在开放 X86 平台上的分布 式并行计算,不依赖于任何专有硬件,达到的性能却远远超过传统高 昂的专有系统。 Big Date2.indd 2 16-11-22 l等等), 但是 Postgresql 是单实例数据库,怎么能在多个 X86 服务器上运行多 个实例且实现并行计算呢?为了这,Interconnnect 大神器出现了。在 那一年多的时间里,大咖们很大一部分精力都在不断的设计、优化、 开发 Interconnect 这个核心软件组件。最终实现了对同一个集群中多 个 Postgresql 实例的高效协同和并行计算,Interconnect 承载了并行 的 是:Greenplum 绝 不 仅 仅 只 是 简 单 的 等 同 于 “Postgresql+interconnect 并行调度 + 分布式事务两阶段提交”, Greenplum 还研发了非常多的高级数据分析管理功能和企业级管理模 块,如下这些功能都是 Postgresql 没有提供的: ·外部表并行数据加载 ·可更新数据压缩表 ·行、列混合存储 ·数据表多级分区 ·Bitmap 索引0 码力 | 64 页 | 2.73 MB | 1 年前3
并行不悖- OLAP 在互联网公司的实践与思考12台虚拟机,39台物理机 17 Greenplum现状说明 三大Greenplum集群定位分类 • 公司IDC_01机房Greenplum体系 Ø 公司第一套Greenplum集群,网络环境为千兆网 Ø 数据来源为OLTP库,针对小数据量传输和计算,部分实时交互操作 Ø 以对账业务为主,统计计算为辅 • 公司IDC_02机房Greenplum体系 Ø 针对数据来源主要是kfk产生csv文件的业务,不直接从数据库传数 平台整体定位 • 定位不同,多集群配合形成逻辑大集群 20 Greenplum现状说明 Greenplum多层业务规划图 21 Greenplum现状说明 三 Greenplum体系架构 二 数据仓库体系架构 一 Greenplum开发规范 五 Greenplum运维体系 四 Greenplum扩展规划 六 22 Greenplum运维体系 环境创建与部署 • 部署流程 Greenplum 软件 / postgresql软件 Ø 初始化实例 Ø 修改实例参数文件 Ø 初始化业务所需库表环境、用户环境 Ø 加载数据 Ø 业务程序访问 23 Greenplum运维体系 环境创建与部署 • 部署注意点 Ø 资源要充足(ETL,管理节点,数据节点,数据集市) Ø 万兆网络 (网络环境对功能和性能的影响) Ø 节点规划 (数据节点6-10个segment节点) Ø 参数调整 (操作系统参数,greenplum集群参数)0 码力 | 43 页 | 9.66 MB | 1 年前3
Greenplum数据仓库UDW - UCloud中立云计算服务商Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 17/206 yum install postgresql-jdbc.noarch –y Windows 环境下 JDBC 驱动,将 jar 添加到⼯程的 BUILD PATH。 ⽰例程序1,java连接UDW,执⾏建表,插⼊操作 PostgreSQLJDBC1.java import java.sql -d database -p port –W 1.3 JDBC⽅式访问 ⽅式访问 Linux操作系统 yum install postgresql-jdbc.noarch –y Windows环境下JDBC驱动,将jar添加到⼯程的BUILD PATH。 ⽰例程序1,java连接UDW,执⾏建表,插⼊操作 PostgreSQLJDBC1.java import java.sql.Connection; numeric 开发指南 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 83/206 ); 唯⼀约束:唯⼀约束确保存储在⼀张表中的⼀列或多列数据数据⼀定唯⼀。要使⽤唯⼀约束,表必须使⽤ Hash 分布策略,并且约束列必须和表的分布键对应的列⼀致(或者是超集) CREATE TABLE products( product_no integer0 码力 | 206 页 | 5.35 MB | 1 年前3
Pivotal HVR meetup 20190816Migrations Disaster Recovery 6 扩展性—高性能架构 7 • 创建并装载目标表 • 用于实时复制的初始化 • 也可以单独使用 • 可以被定义为任务,定时调度执行 异构平台环境下初始化同步 8 • 非侵入式技术对生产没有影响 • 基于日志捕获技术的实时性非常高 • 支持从过去的某一指定时间开始捕获 • 条件过滤 • 支持触发器捕获技术作为补充 基于数据库事务日志的变化数据捕获 和运营效率得以提升,这有助于二手车经销商专注于车辆整备和二手 车零售,加速行业专业化分工、实现规模化发展。 同时,天天拍车也正在布局二手车金融、二手车保卖等创新业务。截 至目前,天天拍车已在全国超过50个多城市设立线下交易服务中心。 参考:https://mp.weixin.qq.com/s/zgCfcbMKOJRYROdxjW6RNA 14 Compare Products 需求:利用GP自建数据仓库面临的数据集成问题 JDBC驱动强依赖。 ➢ 版本更新不及时,对GreenPlum新版本无法持续性支持,不稳定。 ➢ 需开发人员支持,二次开发或脚本支持,开发时间成本和人力成本高。 ➢ 支持数据库版本少,无法支持跨多版本的Oracle、MySQL、PostgresSQL、SQL Server等 ➢ 断点续传不支持 ➢ 大量数据同步的情况下,同步组件效率低 参考:https://mp.weixin.qq.co0 码力 | 31 页 | 2.19 MB | 1 年前3
Greenplum 介绍、去哪儿 网、易观、腾云科技、饿了么、金风科技在内大量开源用户。 Greenplum 大数据平台的优势 ● 一次打包到处运行的平台:部署灵活,不受限于硬件环境和平台,无论裸机、私有云、公 有云均可部署。硬件环境的普适性,提供了极大的灵活性,解放了硬件平台的制约和绑定, 从而允许客户灵活选择最适合的方案,降低未来的迁移代价,而开发、运维人员无需要学 习新的数据库处理技术,人力成本也能够大大降低。 函数和聚集,包括 PL/Python、PL/R、 PL/Java、PL/Perl、PL/PGSQL 和 C 等。 ● 支持标准的平台:支持 SQL、JDBC 和 ODBC 等行业标准。经过半个多世纪的发展, SQL 成为了数据平台的万向头,向上可以连接各种 BI 工具、可视化工具和数据分析工具, 向下可以连接各种 ETL 工具、各种数据源和各种格式的数据等。 ● 集成数据分析平台:支0 码力 | 3 页 | 220.42 KB | 1 年前3
Greenplum分布式事务和两阶段提交协议从一个一致性状态转移到另一个一致性状态。 (满足完整性约束) 实现对A、I、D三个属性的支持 Isolation 隔离性 多个事务并发地执行,对每个事务来说,它并 不会感知系统中有其他事务在同时执行。 多版本并发控制Multi-Version Concurrency Control、 两阶段加锁(Two Phase Locking, 2PL)、乐观并发控制 (OCC) Durability 持久性 Log(WAL) ● 分布式事务和两阶段提交的原理 ● Greenplum两阶段提交协议的实现 ● Greenplum两阶段提交协议的优化 Outline 22 分布式事务 ● 分布式事务,分布式环境下的事务, 是一个典型的嵌套式事务,一个事务 由多个工作节点的子事务组成。 ● 必须保证参与分布式事务的各个场地 (节点)的事务,要么全部提交,要么 全部rollback,不能出现部分提交的情 况。0 码力 | 42 页 | 2.12 MB | 1 年前3
Greenplum 6: 混合负载的理想数据平台-END)的两阶段提交 (开发中) ■ fastpath锁(PostgreSQL合并) 32 Pivotal Confidential–Internal Use Only TPC-B基准测试:环境 基于谷歌云平台(Google Cloud Platform,简称GCP),为5个虚拟主机的集群,包含一 个master主机和四个segment主机,master和segment虚拟主机的配置信息如下 Use Only 多态存储 • 列存储更适合压缩 • 查询列子集时速度快 • 不同列可以使用不同压缩方式: zstd, gzip (1-9), quicklz, delta, RLE • 访问多列时速度快 • 支持高效更新和删除 • AO 主要为插入而优化 表‘SALES’ 11月 列存储 行存储 7月 一年前 二年前 外部表 • 历史数据和不常访问的数 据存储在 HDFS 或者其他0 码力 | 52 页 | 4.48 MB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案数据规模 • 20TB,每天增长400GB • 优势 • 将响应时间缩短90% “借助运行Greenplum数据引擎的Sun数据仓库设备,Reliance可以在快速发展,用户需求不断增加 的数据环境中达到预期的高度响应能力。” - Reliance 的副总裁和主管(决策支持系统)Raj Joshi 25 响应时间 (分) 以前的数据库 客户实例: PLDT • 业务问题 CDR分析 全表扫描测试 – DWA测试环境:针对表C(372844366 rows)进行全表扫描,历时少于1.5 分钟。 – 客户投产环境:针对表C的一个子表(记录数约为C表的1/10) 进行全表扫 描,历时超过20分钟。 结论:如果采用DWA替代现有环境,获得超过120倍的性能提升。 • 真实应用测试 – DWA测试结果:完成应用的全过程仅耗时48分钟。 – 客户投产环境:客户11月份月度处理时,完成本项任务需要65小时。 成本项任务需要65小时。 结论:如果采用DWA替代现有环境,获得超过80倍的性能提升。 案例分享:阿里巴巴 • 业务用例 • 通过分析用户的网络点击日志,进行产品关联分析,让客户可以 快速的找到相近产品 • Existing Solution • Oracle • Facts • 6台华为-赛门铁克T3500服务搭建数据库阵列 • 每台T3500服务器可以自带24TB硬盘 • 每台服务器含有两个四核的CPU(80 码力 | 45 页 | 2.07 MB | 1 年前3
共 19 条
- 1
- 2













