王宜国 - 基于 Rust 编程语⾔构建 Amphitheatre CLI Desktop Server 的全平台实践经验⽀持微服务架构体系和多⼈协作联调测试 Kayn Sona Riven Event Account Project Activity Tariq Share Redis ETCD 可让您完全跳过镜像构建, 使⽤新代码更新正在运⾏的容器, 只需⼏秒钟⽽不是⼏分钟。 本地开发实时部署到远程集群 如何⼯作的? Kubernetes 集群 更改 资源定义 ⻆⾊定义 执⾏资源 资源定义 Desktop CLI Internet AMP Infrastructure Remote Infrastructure Remote Cloud Account VPC Kubernetes 镜像仓库 (ECR、GCR、ACR…) 负载均衡器 Env 1 Namespace Pod 1 Pod 2 Pod 3 Pod 4 AMP Namespace amp-director amp-controllers Syncthing 将变化的代码增量同步到 Amphitheatre 集群内,让你 可实时构建并预览到效果。 为了加速构建,集群内将直接编译并替换掉当前可执 ⾏的进程,⽽⾮全量构建镜像再发到到镜像仓库,然 后再拉取镜像替代旧的 Pod 等⼀系统慢⻓的流程。 Buildpacks How Buildpacks work 分析 探测 恢复构建包可⽤于优化构建和导出阶段的⽂件。 查找⼀组有序的构建包以在构建阶段使⽤。0 码力 | 34 页 | 10.81 MB | 1 年前3
洛佳 组件化驱动、ROM运行环境与RustSBI基地址结合,高灵活性;一次开发,同时 复用于嵌入式、固件和内核中。 # 组件化驱动 合理利用嵌入式、桌面和服务器芯片片内 ROM代码,构造零开销的运行环境。进一 步地,可完成安全引导、安全镜像分发和 通常的嵌入式开发等功能。 # ROM运行环境 # 2023年的RustSBI 作为RISC-V SBI固件的RustSBI,2023年 将与UEFI、LinuxBoot擦出火花。在驱 第 02 部分 裸机和引导程序的ROM阶段 高级语言环境 初始化bss段、data段, 加载栈寄存器,构成高级 语言运行的最小环境 生成镜像结构 外设和时钟 提供具备所有权的外设 列表,提供ROM初始化 完成的时钟配置 编译时生成镜像头,通 常包含处理器配置、时 钟和闪存配置等部分 #[entry] 过程宏 • 过程宏是卫生宏,完成语法树间的转 换,此处用于将main函数转换为固 包含ABI转换、检查参数等步骤。 • 使用过程宏时,同时使用对应包中的 start初始化代码。start代码无需由 用户编写,而是包含在宏生成的输出 代码中。 • 编译即可获得包含镜像头的固件包, 这是传统开发方法不具备的功能。 多核异构芯片的镜像融合(以BL808为例) 部 分 固 件 调 试 首 先 编 译 程 序 为 单 核 固 件 , 再 融 合 三 个 固 件 为 多 核 。 单 核 固 件 可0 码力 | 21 页 | 3.12 MB | 1 年前3
基于 Rust 语言编写的可编程的全球分布式 MQTT 服务器 王文庭wasm如何分发部署? 3. HPMQ函数开发说明 HPMQ平台 触发器 公共函数 (⽐如:tb2aws) 私有函数 配置 关联 关联 使⽤流程 编写函数 Hpmqfile OCI镜像 镜像仓库 hpmq-cli build hpmq-cli push 发布函数 Demo 4. HPMQ未来规划 开源(https://github.com/wangjuyunlian/hpmq)0 码力 | 31 页 | 3.95 MB | 1 年前3
KCL: Rust 在编译器领域的实践与探索KusionStack是什么? KusionStack架构 KCL KusionStack 是什么? KusionStack 是开源的云原生可编程技术栈! 1. 围绕现代应用程序交付以及使用 OCI 镜像对配置和策略进 行编码和统一 2. 组织应用程序资源,并在整个交付过程中通过身份确保安 全 3.为 Kubernetes 和云精简应用交付工作流,并提供开发友 好的体验 基于 Platform as0 码力 | 25 页 | 3.50 MB | 1 年前3
Hello 算法 1.1.0 Rust版树 hello‑algo.com 169 // 返回旋转后子树的根节点 Some(child) } None => None, } } 2. 左旋 相应地,如果考虑上述失衡二叉树的“镜像”,则需要执行图 7‑28 所示的“左旋”操作。 图 7‑28 左旋操作 同理,如图 7‑29 所示,当节点 child 有左子节点(记为 grand_child )时,需要在左旋中添加一步:将 grand_child 作为 node 的右子节点。 图 7‑29 有 grand_child 的左旋操作 第 7 章 树 hello‑algo.com 170 可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称 性,我们只需将右旋的实现代码中的所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到左 旋的实现代码: 执行“左旋”, 再对 node 执行“右旋”。 图 7‑30 先左旋后右旋 第 7 章 树 hello‑algo.com 171 4. 先右旋后左旋 如图 7‑31 所示,对于上述失衡二叉树的镜像情况,需要先对 child 执行“右旋”,再对 node 执行“左旋”。 图 7‑31 先右旋后左旋 5. 旋转的选择 图 7‑32 展示的四种失衡情况与上述案例逐个对应,分别需要采用右旋、先左旋后右旋、先右旋后左旋、左旋0 码力 | 388 页 | 18.50 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Rust 版ome(child.clone())); // 返回旋转后子树的根节点 Some(child) } None => None, } } 2. 左旋 相应地,如果考虑上述失衡二叉树的“镜像”,则需要执行图 7‑28 所示的“左旋”操作。 图 7‑28 左旋操作 同理,如图 7‑29 所示,当节点 child 有左子节点(记为 grand_child )时,需要在左旋中添加一步:将 grand_child 作为 node 的右子节点。 第 7 章 树 www.hello‑algo.com 170 图 7‑29 有 grand_child 的左旋操作 可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称 性,我们只需将右旋的实现代码中的所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到左 旋的实现代码: 执行“左旋”, 再对 node 执行“右旋”。 第 7 章 树 www.hello‑algo.com 171 图 7‑30 先左旋后右旋 4. 先右旋后左旋 如图 7‑31 所示,对于上述失衡二叉树的镜像情况,需要先对 child 执行“右旋”,再对 node 执行“左旋”。 图 7‑31 先右旋后左旋 5. 旋转的选择 图 7‑32 展示的四种失衡情况与上述案例逐个对应,分别需要采用右旋、先左旋后右旋、先右旋后左旋、左旋0 码力 | 387 页 | 18.51 MB | 10 月前3
Hello 算法 1.0.0 Rust版树 hello‑algo.com 168 // 返回旋转后子树的根节点 Some(child) } None => None, } } 2. 左旋 相应地,如果考虑上述失衡二叉树的“镜像”,则需要执行图 7‑28 所示的“左旋”操作。 图 7‑28 左旋操作 同理,如图 7‑29 所示,当节点 child 有左子节点(记为 grand_child )时,需要在左旋中添加一步:将 grand_child 作为 node 的右子节点。 图 7‑29 有 grand_child 的左旋操作 第 7 章 树 hello‑algo.com 169 可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称 性,我们只需将右旋的实现代码中的所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到左 旋的实现代码: 执行“左旋”, 再对 node 执行“右旋”。 图 7‑30 先左旋后右旋 第 7 章 树 hello‑algo.com 170 4. 先右旋后左旋 如图 7‑31 所示,对于上述失衡二叉树的镜像情况,需要先对 child 执行“右旋”,再对 node 执行“左旋”。 图 7‑31 先右旋后左旋 5. 旋转的选择 图 7‑32 展示的四种失衡情况与上述案例逐个对应,分别需要采用右旋、先左旋后右旋、先右旋后左旋、左旋0 码力 | 383 页 | 17.61 MB | 1 年前3
共 7 条
- 1













