积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(24)云原生CNCF(24)

语言

全部中文(简体)(22)中文(简体)(1)

格式

全部PDF文档 PDF(24)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 24 个.
  • 全部
  • 云计算&大数据
  • 云原生CNCF
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 25-云原生应用可观测性实践-向阳

    rights reserved. 云原生应用可观测性实践 向阳 @ 云杉网络 2021-12-08 simplify the growing complexity © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 可观测性 - What & Why 云原生社区可观察性SIG-定义 https://i.cloudnative logue/definition 阿里可观测性数据引擎的技术实践 https://mp.weixin.qq.com/s/0aVgtVCmBmtAgZE_oQkcPw © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 1. 可观测性的成熟度模型 2. 构建内生的可观测性能力 3. 在混合云、边缘云中的实战 4 Ltd. All rights reserved. 可观测性的成熟度模型 1.0 基础支柱 2.0 ? 3.0 ? simplify the growing complexity © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 1.0 支柱:基础的可观测性要素 Metrics, tracing, and logging
    0 码力 | 39 页 | 8.44 MB | 6 月前
    3
  • pdf文档 构建统一的云原生应用 可观测性数据平台

    rights reserved. 构建统一的云原生应用 可观测性数据平台 DeepFlow在混合云中的实践总结 向阳@云杉网络 2022-04-09 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing 统一的可观测性数据平台 telegraf 看云网更清晰 Simplify the growing complexity. 挑战:数据孤岛、资源开销 数据 孤岛 资源消耗 telegraf 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 complexity. AutoTagging:关联、切分、下钻 √ 看云网更清晰 Simplify the growing complexity. 但 … AutoTagging带来的问题 • 理想很丰满:观测数据无缝跳转 • 现实很骨感:上百个标签,后端资源消耗飙升 资源池 区域 可用区 云平台 租户 云资源 宿主机 云服务器 容器资源 容器集群 容器节点 命名空间 容器服务 Ingress Deployment
    0 码力 | 35 页 | 6.75 MB | 1 年前
    3
  • pdf文档 使用Chaos Mesh来保障云原生系统的健壮性-周强

    云原生社区Meetup 第三期·杭州站 使用 Chaos Mesh 来保障云原生系统的健壮性 演讲人:周强 GitHub 地址:https://github.com/zhouqiang-cl PingCAP 工程效率负责人,ChaosMesh 负责人 云原生社区Meetup 第三期·杭州站 The incident in the production environment
    0 码力 | 28 页 | 986.42 KB | 6 月前
    3
  • pdf文档 23-云原生观察性、自动化交付和 IaC 等之道-高磊

    可以自助的从API 使用角度定义、 驱动研发、发布 或者实施与自己 APP的集成。 • API作为产品,可 以给订阅、可以 被交易。 标准化能力-微服务PAAS-从监控到可观测-研发人员的第五感-1 知道 知道的 不知道 不知道的 主动性 被动性 监控 可观察 健康检查 告警 指标 日志 追踪 问题和根因 预警 监控&稳定性 分析&追踪&排错&探索 • 从稳定性目标出发,首先需要有提示应用出问题的手段 研发人员,并且提供日志、跟踪、问题根因分析 等工具进一步从微观帮助研发人员定位和解决问 题,这是这里在业务上的价值-稳定性赋能。 标准化能力-微服务PAAS-从监控到可观测-研发人员的第五感-2 可观察性是云原生特别关注的运维支撑能力,因为它的主动性,正符合云原生对碎片变化的稳定性保障的思想 数据的全面采集 数据的关联分析 统一监控视图与展现 Metric 是指在多个连 续的时间周期 内用于度量的 KPI数值 Logging 通过日志记录 执行过程、代 码调试、错误 异常微观信息 数据之间存在很多关联,通过 关联性数据分析可获得故障的 快速界定与定位,辅助人的决 策就会更加精确 根据运维场景和关注点的不同,以不同图表或者曲 线图来表示整体分布式应用的各维度情况,使得开 发人员可以清晰的观测到整体分布式应用的详细运 行情况,为高精度运维提供可视化支撑 人工发展阶段:符合人分析问题的习惯 宏观->微观
    0 码力 | 24 页 | 5.96 MB | 6 月前
    3
  • pdf文档 云原生安全威胁分析与能力建设白皮书(来源:中国联通研究院)

    的高级产品经理 Matt Stine 发表新书《迁移到云原生 应用架构》,探讨了云原生应用架构的 5 个主要特征:符合 12 因素应用、面 向微服务架构、自服务敏捷架构、基于 API 的协作和抗脆弱性。同一年,Google 作为发起方成立 CNCF,指出云原生应该包括容器化封装、自动化管理、面向 微服务。到了 2018 年,CNCF 又更新了云原生的定义,把服务网格和声明式 API 给加了进 云原生四要素的基本含义 2020 年,云原生产业联盟发布《云原生发展白皮书》[1],指出云原生是面 向云应用设计的一种思想理念,充分发挥云效能的最佳实践路径,帮助企业构建 弹性可靠、松耦合、易管理可观测的应用系统,提升交付效率,降低运维复杂度, 代表技术包括不可变基础设施、服务网格、声明式 API 及 Serverless 等。云 原生技术架构的典型特征包括:极致的弹性能力,不同于虚拟机分钟级的弹性响 具有极强的自愈能力及随意处置 性;大规模可复制能力,可实现跨区域、跨平台甚至跨服务的规模化复制部署。 由此可见,云原生作为一种新兴的安全理念,是一种构建和运行应用程序的 技术体系和方法论,以 DevOps、持续交付、微服务和容器技术为代表,符合云 原生架构的应用程序应该:采用开源堆栈(k8s+Docker)进行容器化,基于微 服务架构提高灵活性和可维护性,借助敏捷方法、DevOps 支持持续迭代和运维
    0 码力 | 72 页 | 2.44 MB | 1 年前
    3
  • pdf文档 2.2.7 云原生技术在2B交付中的实践

    微服务应⽤成为2B软件的架构主流 01. 2B软件交付的困局 微服务是⽬前⼤多数B端业务的⾸选架构 组件复⽤ 按需运维 灵活定制 客户/项⽬要求 运维困难 交付困难 分布式难题 2B软件交付需求多样性 01. 2B 软件交付的困局 交付模式 定制化独⽴交付 标准独⽴交付 SaaS交付+定制交付 SaaS交付 客 单 价 越 ⾼ 交 付 效 率 越 ⾼ 交付环境 公有云 私有云 (2)计算与数据分离 (3)满⾜12 因素 (4)可伸缩性 (5)可配置性 (6)基础可观测性 L2: 具备远程交付能⼒ (1)完全的模版化定义 (2)模版⾃动实例化 (3)数据⾃动初始化 (4)业务⾼容错性 (5)业务⾼可⽤性 L3: 具备持续升级能⼒ (1)⾼容错化数据升级 (2)⾼容错化版本升级 (3)版本可回滚 (4)业务⾼观测性 ⾯向交付的应⽤模型 第三部分 K8S资源的模型定义 (1)组件库获取通⽤能⼒ 多业务系统 隔离开发 (2)发布业务应⽤模型 (提交测试) 版本管理 ⽅案组装 组件共享 (3)获取测试的业务模版版本 测试环境管理 业务级测试 应⽤云原⽣性测试 交付能⼒测试 (4)标记可交付版本 (5)演示环境交付 (6)客户环境持续交付 完整业务架构 A⽤户定制⽅案 B⽤户定制⽅案 研发平台 交付平台 测试平台 应⽤模型定义实践-开发者
    0 码力 | 31 页 | 6.38 MB | 1 年前
    3
  • pdf文档 27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊

    度、或者提送广告内容等 自动化特征 智能家居 智能办公室 智能信号灯... 远端控制 云端分析系统 设备端 (现场)边缘计算BOX 业务场景复杂,对算力、通信要求很高,计算放置于 云端时效性差,另外无法现场就对业务进行处理,比 如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 大范围为客户赋能,IoT和边缘计算一定走向融合。 按需伸缩、按需使用付费 弹性 可弹性无限拓展 弹性工作负载 公有云 ETCD ETCD Image Image Data X • 企业可以在业务高峰时使用混合云补充 算力,并在低谷时从公有云撤回算力, 经济性和业务支撑两不误 • 可以结合私有云和公有各自的优势,尤 其是数据安全方面,这是客户使用公有 云的最大顾虑 • 在云原生产生之前,混合云架构就存在 了,云原生的混合云,除了具备传统混 合云的属性和特性,也同时具备了支撑 合云的属性和特性,也同时具备了支撑 现在应用程序更好在不同云形态部署、 运行的能力。 • 云之间同步服务元数据为相同的服务治 理提供基础,同步镜像,为同一服务拓 展算力提供基础,同步Data,为隔离底 层云分布,在业务上的一致性上提供基 础。 • SLB会根据算力资源需要进行切流。 • 混合云本质是一种资源运用形式,资源 使用地位不对等,以私有云为主体。 控制台 控制台 高级能力-多云(资源角度) 调研机构Gartne
    0 码力 | 20 页 | 5.17 MB | 6 月前
    3
  • pdf文档 36-云原生监控体系建设-秦晓辉

    •要么使用注册中心来自动发现,要么就是采集器和被监控对象通过sidecar模式捆绑一体 指标生命周期变短 •微服务的流行,要监控的服务数量大幅增长,是之前的指标数量十倍都不止 •广大研发工程师也更加重视可观测能力的建设,更愿意埋点 •各种采集器层出不穷,都是本着可采尽采的原则,一个中间件实例动辄采集几千个指标 指标数量大幅增长 •老一代监控系统更多的是关注机器、交换机、中间件的监控,每个监控对象一个标识即可,没有维度的设计 kubelet 和 kube-proxy l 业务程序,即部署在容器中的业务程序的监控,这 个其实是最重要的 随着 Kubernetes 越来越流行,几乎所有云厂商都提供 了托管服务,这就意味着,服务端组件的可用性保障交 给云厂商来做了,客户主要关注工作负载节点的监控即 可。如果公司上云了,建议采用这种托管方式,不要自 行搭建 Kubernetes,毕竟,复杂度真的很高,特别是 后面还要涉及到升级维护的问题。既然负载节点更重要,
    0 码力 | 32 页 | 3.27 MB | 6 月前
    3
  • pdf文档 01. MOSN 高性能网络扩展实践 - 王发康

    Extension 跨语言语言支持(C/C++/Rust)、 隔离性、安全性、敏捷性 处于试验阶段,性能损耗较大; WASM 目前仅对C/C++/Rust 友好, 对 GoLang Runtime 还未完全支持; 不能复用已有的 SDK,需要做网络 IO 适配改造 External-Proc Extension 跨语言支持、隔离性 需要跨进程通信性能低(UDS vs CGO 1KB Latency 05 ms 左右  MoE 相比于 GoLang 自身 HTTP2 处理能力具有 4 倍左右性能提升  MoE 相比于 Envoy 性能下降 20%,虽然牺牲部分性能,但解决了用户在其可扩展 性、灵活性、生态上的痛点,另外对性能方面也有优化空间: 经济体互通网关蚂蚁侧场景,当前灰度了少量的线上流量,已经平稳运行了 1 个月左右; • 业务代码优化,如减少对象数量 • 内存管理优化,如 jemalloc
    0 码力 | 29 页 | 2.80 MB | 1 年前
    3
  • pdf文档 22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊

     应用类型丰富  应用需求多变 企业从信息化到数字化的转型带来大量的应用需求 软件组件 运行环境 部署平台 …… …… 应用丰富及架构演进带来的开发和运维复杂性 本地IDC 虚拟化 超融合 公有云 …… 测试环境 生产环境 复杂的应用软件架构,在开发、测试、运维 团队之间建成了认知的“墙”,团队间配合效 传统实践中,主要采用虚机/物理机+SpringCloud等微服务框架的方式承载微服务应用。但在一个虚机/服务器上 部署多个微服务会产生如下问题—— • 资源预分配,短时间内难以扩展 • 缺乏隔离性,服务相互抢占资源 • 增加环境、网络(端口)和资源管理的复杂性,治理成本高 • 监控粒度难以满足微服务应用运维的需要,线上问题难以排查定位,往往需要研发介入 我们需要一种新型的、为云而生的业务承载平台,去应对上述问题。 微服务应 用 支持热升级,服务更新不影响业务可用性  支持服务的快速地部署、扩展、故障转移  支持更细致、自动化的运维,快速恢复  …… 过去 现在 未来 云原生的业务承载平台? 什么是云原生->为云而生 • 落地的核心问题:业务微服务的划分和设计(DDD,咨询方案等)、部署困难、维持运行困难、云资源 管理与应用管理视角分离导致复杂性等 • 传统方案:仅仅考虑了一部分
    0 码力 | 42 页 | 11.17 MB | 6 月前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
25原生应用观测实践向阳构建统一数据平台使用ChaosMesh保障系统健壮健壮性周强23观察自动自动化交付IaC高磊安全威胁分析能力建设白皮皮书白皮书来源中国国联联通中国联通研究研究院2.2技术2B27赋能AIoT边缘计算形态以及成熟成熟度模型之道36监控体系秦晓辉01MOSN高性性能高性能网络扩展王发康22缘起底座PaaSService
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩