积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(28)云原生CNCF(28)

语言

全部中文(简体)(25)中文(简体)(1)

格式

全部PDF文档 PDF(28)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 28 个.
  • 全部
  • 云计算&大数据
  • 云原生CNCF
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 36-云原生监控体系建设-秦晓辉

    云原生监控体系建设 秦晓辉 快猫星云 联合创始人 个人介绍 秦晓辉,常用网名龙渊秦五、UlricQin,山东人,12年 毕业自山东大学,10年经验一直是在运维研发相关方向, 是Open-Falcon、Nightingale、Categraf 等开源软件 的核心研发,快猫星云联合创始人,当前在创业,为客 户提供稳定性保障相关的产品 个人主页:https://ulricqin.github.io/ io/ 大纲 • 云原生之后监控需求的变化 • 从Kubernetes架构来看要监控的组件 • Kubernetes所在宿主的监控 • Kubernetes Node组件监控 • Kubernetes控制面组件监控 • Kubernetes资源对象的监控 • Pod内的业务应用的监控 • 业务应用依赖的中间件的监控 云原生之后监控需求的 变化 云原生之后监控需求的变化 •相比物理机虚拟机时 •原来使用资产视角管理监控对象的系统不再适用 •要么使用注册中心来自动发现,要么就是采集器和被监控对象通过sidecar模式捆绑一体 指标生命周期变短 •微服务的流行,要监控的服务数量大幅增长,是之前的指标数量十倍都不止 •广大研发工程师也更加重视可观测能力的建设,更愿意埋点 •各种采集器层出不穷,都是本着可采尽采的原则,一个中间件实例动辄采集几千个指标 指标数量大幅增长 •老一代监控系统更多的是关注机器
    0 码力 | 32 页 | 3.27 MB | 6 月前
    3
  • pdf文档 使用Chaos Mesh来保障云原生系统的健壮性-周强

    云原生社区Meetup 第三期·杭州站 使用 Chaos Mesh 来保障云原生系统的健壮性 演讲人:周强 GitHub 地址:https://github.com/zhouqiang-cl PingCAP 工程效率负责人,ChaosMesh 负责人 云原生社区Meetup 第三期·杭州站 The incident in the production environment
    0 码力 | 28 页 | 986.42 KB | 6 月前
    3
  • pdf文档 24-云原生中间件之道-高磊

    和降低成本 默认安全策略,可以天然的规避大部分 安全问题,使得人员配置和沟通工作大 量减少,提高了整体效率! 安全右移是为了恰到好处的安全,一些非严 重安全问题,没有必要堵塞主研发流程,可 以交于线上安全防御系统。提高了整体实施 效率! 安全编排自动化和响应作为连接各个环 节的桥梁,安全管理人员或者部分由 AIOps组件可以从全局视角观察,动态 调整策略,解决新问题并及时隔离或者 解决! DevSecOps 术手段 可以自动化的对非预计风险进行识别和风险隔离 对系统性能有一定影响 可信计算 核心目标是保证系统和应用的完整性,从而保证系统按照设计预期所规 定的安全状态。尤其是像边缘计算BOX这种安全防护,根据唯一Hash值验 证,可以实现极为简单的边云接入操作,运行态并不会影响性能。 可信根一般是一个硬件,比如CPU或者TPM,将从 它开始构建系统所有组件启动的可信启动链,比 如UEFI、loader、OS、应用等,可以确保在被入侵 千亿数据实时分析 数据源 设备监控 传感器 轨迹数据 车联网 业务集群 物联网套件写入 云原生 DB 轨迹查 询|实时 监测 MR 云原 生DB 统计 分析 物联网数据存储和查询 将车联网数据、设备监控数据、客流分析管控数据、交通数据、传感器数据实时 写入HBase中,分析结果输出到用户的监控前端系统展示,实现物联网数据的实时 监控分析。 优势 易接入: 轻松对接消息系统、流计算系统 高并发: 满足千万级并发访问
    0 码力 | 22 页 | 4.39 MB | 6 月前
    3
  • pdf文档 云原生安全威胁分析与能力建设白皮书(来源:中国联通研究院)

    究,致力于推动云原生在通信行业落地实践,全面落实好“大安全”主责主业, 以实际行动践行“国家队、主力军、排头兵”的责任担当。2022 年,我们在“联 通合作伙伴大会”发布了《中国联通云原生安全实践白皮书》,该书系统阐述了 云计算所面临的新型安全问题,介绍了云原生安全防护体系,并给出了云原生安 全防护体系建设实践。 过去一年来,我们持续深耕云原生安全领域,联合多家单位共同编写了《云 原生安全威胁分析与能 云原生四要素的基本含义 2020 年,云原生产业联盟发布《云原生发展白皮书》[1],指出云原生是面 向云应用设计的一种思想理念,充分发挥云效能的最佳实践路径,帮助企业构建 弹性可靠、松耦合、易管理可观测的应用系统,提升交付效率,降低运维复杂度, 代表技术包括不可变基础设施、服务网格、声明式 API 及 Serverless 等。云 原生技术架构的典型特征包括:极致的弹性能力,不同于虚拟机分钟级的弹性响 图 3 所示。其中,横轴是开发运营安全的维度,涉及需求设计(Plan)、开发(Dev)、 运营(Ops),细分为需求、设计、编码、测试、集成、交付、防护、检测和响 应阶段;而纵轴则是按照云原生系统和技术的层次划分,包括容器基础设施安全、 容器编排平台安全、微服务安全、服务网格安全、无服务计算安全五个部分,二 维象限中列举安全机制(蓝色标注部分)已经基本覆盖全生命周期的云原生安全 能力。此外,DevSecOps
    0 码力 | 72 页 | 2.44 MB | 1 年前
    3
  • pdf文档 22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊

    1、信息管理 MIS、ERP… 2、流程规范 BPM、EAI… 3、管理监控 BAM、BI 4、协作平台 OA、CRM 5、数据化运营 SEM、O2O 6、互联网平台 AI、IoT 数据化运营 大数据 智能化管控 互联网平台 跨企业合作 稳态IT:安全、稳定、性能 敏态IT:敏捷、弹性、灵活 各行业IT应用系统不断丰富与创新 总部 机关 内部员工 分支 机构 内部员工 移动 接入 做哪些事情? 场景 2 如果应用负载升高/降低,如何及时、按需扩展/收缩所 用资源? 场景 3 如果业务系统要升级,如何平滑升级?万一升级失败是 否能够自动回滚?整个过程线上业务持续运行不中断。 传统稳态业务环境难以高效承载敏态应用 发现故障 (假死) 创建 新实例 配置 运行环境 部署当前 应用版本 添加 监控 配置 日志采集 测试确认 服务正常运行 实例 加入集群 恢复正常 场景 做哪些事情? 场景 2 如果应用负载升高/降低,如何及时按需扩展/收缩所用 资源? 场景 3 如果业务系统要升级,如何平滑升级?万一升级失败是 否能够自动回滚?整个过程线上业务持续运行不中断。 传统稳态业务环境难以高效承载敏态应用 发现故障 (假死) 创建 新实例 配置 运行环境 部署当前 应用版本 添加 监控 配置 日志采集 测试确认 服务正常运行 实例 加入集群 恢复正常 工作量
    0 码力 | 42 页 | 11.17 MB | 6 月前
    3
  • pdf文档 23-云原生观察性、自动化交付和 IaC 等之道-高磊

    驱动研发、发布 或者实施与自己 APP的集成。 • API作为产品,可 以给订阅、可以 被交易。 标准化能力-微服务PAAS-从监控到可观测-研发人员的第五感-1 知道 知道的 不知道 不知道的 主动性 被动性 监控 可观察 健康检查 告警 指标 日志 追踪 问题和根因 预警 监控&稳定性 分析&追踪&排错&探索 • 从稳定性目标出发,首先需要有提示应用出问题的手段 • 当提示出现问题后,就需要有定位问题位置的手段,进 拓扑流量图:是不是按预期运行 分布式跟踪:哪些调用 故障或者拖慢了系统 监控与告警: 主动告诉我 问题发生了! 微服务部署后就像个黑盒子,如何发现问题并在 远端运维是主要的课题,那么就需要从宏观告知 研发人员,并且提供日志、跟踪、问题根因分析 等工具进一步从微观帮助研发人员定位和解决问 题,这是这里在业务上的价值-稳定性赋能。 标准化能力-微服务PAAS-从监控到可观测-研发人员的第五感-2 可观察性是云原 可观察性是云原生特别关注的运维支撑能力,因为它的主动性,正符合云原生对碎片变化的稳定性保障的思想 数据的全面采集 数据的关联分析 统一监控视图与展现 Metric 是指在多个连 续的时间周期 内用于度量的 KPI数值 Tracing 通过TraceId来 标识记录并还 原发生一次分 布式调用的完 整过程和细节 Logging 通过日志记录 执行过程、代 码调试、错误 异常微观信息 数据之间存在很多关联,通过
    0 码力 | 24 页 | 5.96 MB | 6 月前
    3
  • pdf文档 25-云原生应用可观测性实践-向阳

    complexity © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 业界动向 —— 云监控扛把子 Datadog 零侵入 == 全覆盖 == 监控入口 Datadog Universal Service Monitoring 要点: 1、Alerts and SLOs for every service 2、No code the growing complexity © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 业界动向 —— 云厂商监控 阿里云ARMS 问题:依赖于eBPF,仅支持Kernel 4.15+、仅阿里云(K8s需托管) simplify the growing complexity © 2021, YUNSHAN 应用连接方式的变化 应用监控的变化 传统的方法: 开发人员埋点, 标准SDK/JavaAgent, 流量分光镜像。 云原生下的难题: 微服务迭代快, 侵入式监控效率低; 云网络虚拟化, 东西向流量监控难。 挑战/必要性:网络的动态性和复杂性,不监控流量谈何应用可观测 机遇/有效性:云网络连接API/函数,监控流量可零侵入实现应用可观测 è 云原生应用可观测“原力”,流量监控能力是机遇、基石 simplify
    0 码力 | 39 页 | 8.44 MB | 6 月前
    3
  • pdf文档 基于Consul的多Beats接入管控与多ES搜索编排

    barryliang@tencent.com 基于Consul的多Beats接入 管控与多ES搜索编排 2 拥抱开源、释放云原生的力量 • 背景与挑战 • 多Beats/Logstash接入管控 • 多ES搜索编排系统 • 日志AIOps探索 3 背景与挑战 产品数量 人员规模 主机规模 100+ 1000 + 10000 + 如何降低日志接入门槛 如何保证日志实时上报 如何保障日志采集不影响业务 化、界面化、自动化的日志接入方案 5 案例:1000+业务10000+台 主机如何快速实现日志接入? 业务规模 1000+业务、 10000+业务主机、每天百T日志增量 日志需求 收集业务日志文件用于故障分析与告警监控 收集主机性能数据做容量分析 日志热数据保存七天 历史数据冷备一个月 其他诉求 日志上报不能影响核心业务 数据上报延时可感知 准备ES 安装Filebeat 编写Filebeat配置文件 测试并下发配置 传统Beats接入流程 配置更改 现网配置是否全部一致? 日志上报是否有延时? Filebeat是否资源消耗过多? Filebeat异常退出如 何处理? 如何做上报性能调优? 6 系统架构 云Kafka Api-server2 Consul 云ES Agent-1 Agent-N Agent-1 Agent-N 数据流 配置监听 Agent注册 配置下发
    0 码力 | 23 页 | 6.65 MB | 1 年前
    3
  • pdf文档 构建统一的云原生应用 可观测性数据平台

    scope」的Metrics 例如:响应Request A的实例在一段时间内做了多少次GC? ① 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ② 应用、系统、网络的Metrics之间 例如:某个Service的Pod的QPS、IOPS、BPS分别是多少? 例如:Pod所在的KVM宿主机的CPU、内存指标? ② 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ④应用、系统、网络的Log之间 例如:应用日志ERROR与Ingress日志有什么关联吗? ④ 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ⑤「非Request scope」的Log与Trace之间 例如:系统日志异常与Request时延增大是否有关联 ⑤ 看云网更清晰 Simplify Simplify the growing complexity. 数据打通并不简单 ⑥ 应用、系统、网络的Trace之间 例如:访问一个服务的耗时究竟有哪些部分组成? App,Sidecar,Node,KVM,NFVGW? ⑥ 看云网更清晰 Simplify the growing complexity. 我们需要哪些Tag?OpenTelemetry的答案 服务属性 代码属性 实例属性
    0 码力 | 35 页 | 6.75 MB | 1 年前
    3
  • pdf文档 27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊

    高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-1 远端控制 云端分析系统 设备端 自动化解决用户使用体验问题,计算量属于窄带范畴, 所以计算算力重点在于云端,云端计算体系架构成熟, 成本较低,在业务上本地的设备根据模式信号反馈一些 动作,比如下雨关窗帘,是自动化范畴,上传云端的数 据都是属性数据,比如谁什么时候干了什么,后续云端 根据个人喜好数据为用户提供比如按照个人喜好调节温 根据个人喜好数据为用户提供比如按照个人喜好调节温 度、或者提送广告内容等 自动化特征 智能家居 智能办公室 智能信号灯... 远端控制 云端分析系统 设备端 (现场)边缘计算BOX 业务场景复杂,对算力、通信要求很高,计算放置于 云端时效性差,另外无法现场就对业务进行处理,比 如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 高级能力-业务双引擎循环驱动-业务数据化、数据业务化 互联网业务、万物互联业务等等造就了海量数据,而海量数据应该也必须能够提炼出价值为业务反向赋能,形成正向业务价值循环 云原生平台(PaaS+Caas+IaaS) 业务系统连接一组人,或者说企业业务实际能力提供者,通过双中台可 以将最上层业务产品诉求直接下沉到能力端,比如我们需要快速搭建一 个电商下单APP,只需要利用中台提供的能力要素,并在APP端组织业务 流程或者
    0 码力 | 20 页 | 5.17 MB | 6 月前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
36原生监控体系建设秦晓辉使用ChaosMesh保障系统健壮健壮性周强24中间中间件之道高磊安全威胁分析能力白皮皮书白皮书来源中国国联联通中国联通研究研究院22缘起底座PaaS以及Service23观察自动自动化交付IaC25应用观测实践向阳基于ConsulBeats接入管控ES搜索编排构建统一数据平台27赋能AIoT边缘计算形态成熟成熟度模型
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩